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Abstract

We establish the log-concavity and the log-convexity properties for the
hyperpell, hyperpell-lucas and associated sequences. Further, we investigate
the g-log-concavity property.
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1. Introduction

Zheng and Liu [13] discuss the properties of the hyperfibonacci numbers F,ET] and
the hyperlucas numbers Lg I, They investigate the log-concavity and the log convex-
ity property of hyperfibonacci and hyperlucas numbers. In addition, they extend
their work to the generalized hyperfibonacci and hyperlucas numbers.
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The hyperfibonacci numbers F,[ﬂ and hyperlucas numbers Lw

Dil and Mez6 [9] are defined as follows. Put

, introduced by
FIN=N"F" with FY =F,,
k=0

n
L =3"rr Y with LY = L,
k=0

where r is a positive integer, and F}, and L,, are the Fibonacci and Lucas numbers,
respectively.

Belbachir and Belkhir [1] gave a combinatorial interpretation and an explicit
formula for hyperfibonacci numbers,

[n/2]

. n+r—=k

Fl, =5 ( s ) (1.1)
k=0

Let {U,},>o and {V,,}, -, denote the generalized Fibonacci and Lucas se-
quences given by the recurrence relation

Whg1 =pW,, + W,y (n > 1), with Ug=0, U1 =1, Vo =2, V; =p. (1.2)
The Binet forms of U,, and V,, are
o (_l)n,r—n

VA

with A = p? +4, 7= (p++/A)/2, and p > 1.
The generalized hyperfibonacci and generalized hyperlucas numbers are defined,
respectively, by

U, = and V, ="+ (-1)"r7 " (1.3)

ol ="y, with Ul = v,
k=0
vt =3yl with v =,
k=0

The paper of Zheng and Liu [13]| allows us to exploit other relevant results.
More precisely, we propose some results on log-concavity and log-convexity in the
case of p = 2 for the hyperpell sequence and the hyperpell-lucas sequence.

Definition 1.1. Hyperpell numbers P,[Lr] and hyperpell-lucas numbers Qw are
defined by

P =3P with PO =P,
k=0
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Qi :=3"Qr " with QI =,
k=0

where r is a positive integer, and {P,} and {Q,} are the Pell and the Pell-Lucas
sequences respectively.

Now we recall some formulas for Pell and Pell-Lucas numbers. It is well know
that the Binet forms of P, and @Q,, are
a — (_l)nafn B
Pob=————— and Q,=a"+(—1)"a™ ", 1.4
e Q 1) (14

where o = (1 +1/2). The integers

P(n, k) =2""2k (n ; k) and Q(n,k) = 27"—2]“% (n ; k), (1.5)

are linked to the sequences {P,} and {Q,} . It is established [2]| that for each fixed
n these two sequences are log-concave and then unimodal. For the generalized se-
quence given by (1.2), also the corresponding associated sequences are log-concave
and then unimodal, see [3, 4].

The sequences {P,} and {@,} satisfy the recurrence relation (1.2), for p = 2,
and for n > 0 and n > 1 respectively, we have

ln/2] A ln/2] 0 Ik
Pop1= ) 2”—%( ) > and Qn =) 2"—2kn_k( ) ) (1.6)
k=0

k=0
It follows from (1.4) that the following formulas hold

P2 — P, 1Ppyiy = (—1)"H (1.7)
Q?l —Qn-1Qnt1 = 8(_1)n' (1'8)

It is easy to see, for example by induction, that for n > 1
P,>n and @, >n. (1.9

Let {xy},~, be a sequence of nonnegative numbers. The sequence {x,}, - is
log-concave (respectively log-convex) if xf > xj 1241 (respectively x? < @j_1Tj41
) for all j > 0, which is equivalent (see [5]) to z;x; > z;,_1x;11 (respectively
Tilj S l'i,l"EjJrl) for j Z ) Z 1.

We say that {2}, is log-balanced if {,},>0 is log-convex and {z, /n!},>0
is log-concave.

Let ¢ be an indeterminate and {f,(q)},,~, be a sequence of polynomials of g.
If for each n > 1, f2(q) — fa—1(q) fns+1(q) has nonnegative coefficients, we say that
{fn(@)},50 18 g-log-concave.

In section 2, we give the generating functions of hyperpell and hyperpell-lucas
sequences. In section 3, we discuss their log-concavity and log-convexity. We
investigate also the g-log-concavity of some polynomials related to hyperpell and
hyperpell-lucas numbers.
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2. The generating functions

The generating function of Pell numbers and Pell-Lucas numbers denoted Gp(t)
and Gg(t), respectively, are

+oo ¢
S N £ p—— (2.1)
= 1—-2t—t

and

22
ZQnt” = _ttz. (2.2)

So, we establish the generating function of hyperpell and hyperpell-lucas num-
bers using respectively

pil=p 4 pr=1 ang QU =@, 4+ Q1. (2.3)

The generating functions of hyperpell numbers and hyperlucas numbers are

h [r n _ t
Gr Z P (1—-2t—t2)(1—1t)"" (24)
and
= 2 -2t
[rlyn —
ZZ:Q ! (1 =2t—2)(1-t)" (25)

3. The log-concavity and log-convexity properties

We start the section by some useful lemmas.

Lemma 3.1. [12] If the sequences {x,,} and {y,} are log-concave, then so is their
ordinary convolution z, = _o TpYn—k, n=0,1,....

Lemma 3.2. [12] If the sequence {x,} is log-concave, then so is the binomial
convolution z, =Y _, (Z)xk, n=20,1,...

Lemma 3.3. [8] If the sequence {x,} is log-convez, then so is the binomial con-
volution z, =y p_ 0( )xk, n=0,1,...

The following result deals with the log-concavity of hyperpell numbers and
hyperlucas sequences.

Theorem 3.4. The sequences {R[J]} - and {Qm} oo 9T log-concave forr > 1
n>0 n>0

and r > 2 respectively.
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Proof. We have
1
Pl = 7 (@n41—2) and QM =2P, 1. (3.1)

2
When n =1, (P,[L”) Pm Pgrl =1>0. When n > 2, it follows from (3.1)
and (1.8) that

2
(PI)" = PR, = = [(@ns = 27— (@0~ 2) (Quiz —2)]
= % ( 314-1 - QnQn+2 - 4Qn+l + 2Qn + 2Qn+2)
_ i (2(=1)""" + Quy1) > 0.

Then {P,[LU} is log-concave. By Lemma 3.1, we know that {Py[f]}
n>0 n>0

(r > 1) is log-concave.
It follows from (3.1) and (1.7) that

2
(le) —QM QY =4 (P2, — PyPyis) =4(—1)" = +4 (3.2)

Hence { Ll ]} is not log-concave.
n>0

One can verify that

1 1
QP =3 (Qui2 —2) = 2Pl (3.3)
Then {QE]} is log-concave. By Lemma 3.1, we know that {Qg]} N
nz n>0
(r > 2) is log-concave. This completes the proof of Theorem 3.4. O

Then we have the following corollary.

Corollary 3.5. The sequences { =0 (Z)P,y]} and {Zk 0( ) [T]} oo 0T
n> nz

log-concave for r > 1 and r > 2 respectively.

Proof. Use Lemma 3.2.

Now we establish the log-concavity of order two of the sequences {PT[LI]} and
n>0
{ L?]} for some special sub-sequences. O
n>0

Theorem 3.6. Let be forn >1
2 2
o= (P) = PPN, and Ryi= (QF) -0

Then {Ton}, 51, {Ron+1},50 are log-concave, and {Tan+1},,50: {Rantn>1 are log-
convez.
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Proof. Using respectively (3.3) and (1.8), we get

2
(QEO - QE]—le—]H =2(=1)" + Qn+1,
and thus, for n > 1,

T, = i (2 (-)" '+ Qn) and Ry =2(=1)" 4+ Qny1- (3.4)

By applying (3.4) and (1.8), for n > 1 we get
Q3 — Q2n—2Qan12 = =32 and Q3,1 — Q2n—1Q2n43 = 32. (3.5)
Then

1
T22n - TQ(n—l)TQ(n—i-l) = T6 (Q%n - Q277,—2Q2n+2 - 4Q2n + 2Q2n—2 + 2Q2n+2)
and

R3,.1 — Ron_1Ronss = (Q3p10 — @20Q2nt2 — 4Qap12 + 2Q2, + 2Q2514)
— 64(Qanso —4) > 0.

Then {T5,},~, and {R2,11},~, are log-concave.

Similarly by applying (3.4) and (3.5), we have

1

T3 i1 — Ton1Tony3 = *§Q2n+1 <0,
and

R3, — Ry(—1)Ro(ny1) = —8Q2n41 < 0.
Then {T2n+1}n20 and {Rgn}n21 are log-convex. This completes the proof. O
Corollary 3.7. The sequences {3 _, (Z)TQk}nZO and {37 _, (Z)R2k+1}n20 are
log-concave.
Proof. Use Lemma 3.2. O
Corollary 3.8. The sequences {>_;_, (Z)T2k+1}n>1 and {37 _, (Z)ng}n>1 are
log-convez. B B

Proof. Use Lemma 3.3. O

Lemma 3.9. Let a, := Y _ () Pit1, where {Pn}, >0 is the Pell sequence. Then
{an},~q satisfy the following recurrence relations

n—2
ap = 3ap_1 + E ar and a, =4a,—-1 — 20,_2.
k=0
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Proof. Let be b, := ZZ:O (Z) Py, where {P,},~_, is the Pell sequence extended
to P,1 = 1.

Using Pascal formula and the recurrence relation of Pell sequence together into
the development >, _, (Z)Pk+1 we get a, = 3ap_1 + bn_1, then by b, = b,_1 +

an,—1. By iterated use of this relation with the precedent one, we get a,, = 3a,,_1 +
Z;g ar, (with by = 0 and ag = 1), thus a,, = 4a,—1 — 2a,_2. O

Th 3.10. Th {nai} a {Zis (e} log-
eorem e sequences §n@) 50 and Y o (k)Qk 50 are log
concave and log-conver, respectively.

Proof. Let be
2 " /n
o= (@) - 0@ Q0 and 1= (7l
k=0

with the convention that K.y = 0.
From (3.2), we have

2
S = 4(n? = 1) (-1)" + (@1
=4[(n*-1)(-1)"+ P2, ] >4[(n* -1 (-1)" + (n+1)*] > 0.

Then {nQE]} N is log-concave.
n>0
Using Lemma 3.9, we can verify that

K, =4K,_1 — 2K, _». (3.6)
The associated Binet-formula is
(14+V2)am - (1-v2)p"
a—4

K, = , with a,8=2+V2,

which provides
K2 - K, 1K, =—-2"" <o.
Then {1 (1)QL'} _ is log: . O
en A (k)Qk - is log-convex
Remark 3.11. The terms of the sequence {K,},, satisfy K, = 200 +2)/2p 1 if s
even, and K, =2»=1/2Q, . if n is odd.

Theorem 3.12. The sequences {n!Py]} and {n!QE]} o, Ore log-balanced.
n>0

n>0
Proof. By Theorem 3.4, in order to prove the log-balanced property of {n!P,[LH }
n>0

and {n'QE]} we only need to show that they are log-convex. It follows from
n>0

the proof of Theorem 3.4 that

(PE) = PP = 1 (21" 4 Quin). (37)
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and from the proof of Theorem 3.6 that

(Q;gJ)"’ — Q2 QP =2(-1)" + Quir. (3.8)
Let
M, :=n (P,L”)2 —(n+1)PM P
Bai=n (Q2) - 0+ 1Q, Q0
from (3.3), (3.7) and (3.8), we get

M, = (73%” (2 (—l)nil + Qn+1) - %(an% - 2)27

By = (n+1)(2(=1)" + Qni1) — i(@n+2 )

Clearly B,, <0 for n = 0,1,2. We have by induction that for n > 1, @, > n + 1.
This gives

Ba < (Quit = 1) 2(-1)" + @uin) — 1 2Qus1 +Qu — 22 <0.

Also, M,, <0 for n =2 and for n > 3, @, > n+ 6. This givesn+ 1 < Q,+1 — 6,
and

M, < {(Qn-&-l —6) (2 ()"t + Qn+1) — (Qny1 — 2)2}

[(—2+2(-1"") Quir —4—12(-1)" "] <0

N

Hence {n!P,[ll]}nZO and {n!QE]}nzo are log-convex. As the sequences {Py[Ll]}nzo

and {Q;LZ]}”ZQ are log-concave, so the sequences {n!Pq[Ll]}nZO and {n!QLz]}nZO are
log-balanced. O

Theorem 3.13. Define, for r > 1, the polynomials

n

Purla) = S P and Quot) =30 QL
k=0

k=0
The polynomials P, »(q) (r > 1) and Q. ,(q) (r > 2) are g-log-concave.
Proof. Whenn >1,r >1,

P’r%,r(Q) - Pn—l,T(Q)Pn-i-l,r(Q)

n 2 n—1 n+1
_ <Z Pg]qk> o (Z P]£r]qk> (Z P}Er]qk>
k=0 k=0 k=0
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() (g o)

(PT[LT]qn - 7[;]-1‘1”“) Z P/y]qk + Pv[LT]Pﬂ-qunH
k=0

(PR Bl P, ) o7
1

3

k

When n > 1, r > 2, through computation, we get

2 1(@) = Quo1o (@@ (@) = Y (@R - QUL QL ) 7 + Qblg

k=1

As {PT[LT]} and {Q[ﬁ} (r > 2) are log-concave, then the polynomials P, ,-(q)

(r>1) and Qn (q) (r > 2) are g-log-concave. O
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