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Abstract

A general method to prove strong laws of large numbers for random fields
is given. It is based on the Hájek-Rényi type method presented in Noszály
and Tómács [14] and in Tómács and Líbor [16]. Noszály and Tómács [14]
obtained a Hájek-Rényi type maximal inequality for random fields using mo-
ments inequalities. Recently, Tómács and Líbor [16] obtained a Hájek-Rényi
type maximal inequality for random sequences based on probabilities, but
not for random fields. In this paper we present a Hájek-Rényi type maximal
inequality for random fields, using probabilities, which is an extension of the
main results of Noszály and Tómács [14] by replacing moments by proba-
bilities and a generalization of the main results of Tómács and Líbor [16]
for random sequences to random fields. We apply our results to establish-
ing a logarithmically weighted sums without moment assumptions and under
general dependence conditions for random fields.

Keywords: Strong laws of large numbers, Maximal inequality, Probability
inequalities, Random fields.

MSC: Primary 60F15 60G60. Secondary 62H11 62H35.

3



4 Cheikhna Hamallah Ndiaye, Gane Samb LO

1. Introduction and notations

We are concerned in this paper with strong laws of large numbers (SLLN) for
random fields. Although this type of problems is entirely settled for sequence of
independent real random variables (see for instance [9]) and general strong laws
of large numbers for dependent real random variables based on Hájek-Rényi types
inequalities. But as for random fields, they are still open. As a reminder, we recall
that a family of random elements (Xn)n∈T is said to be a random field if the set
is endowed with a partial order (≤), not necessarily complete. For example, and
it is the case in this paper, T may be Nd, where d > 1 is an integer and N is the
set of nonnegative integers. For such a real random field (Xn)n∈Nd , we intend to
contribute to assessing the more general SLLN’s, that is finding general conditions
under which there exists a real number µ and a family of normalizing positive
numbers (bn)n∈Nd , named here as a d-sequence, such that, for S(0,...,0) = 0, and
Sn =

∑
m≤nXm for n > 0, one has

Sn/bn → µ, a.s.

In the case of random fields, the data may be heavily dependent and then Hájek-
Rényi type maximal inequalities are needed to obtain strong laws of large numbers,
like in the real case. It seems that providing such inequalities goes back to Móricz
[11] and Klesov [8]. Based on such inequalities, many authors established strong
laws of large numbers such as Nguyen et al. [13], Tómács [19], Lagodowski [10],
Noszály and Tómács [14], Móricz [12], Klesov [8], Fazekas et al. [5], Fazekas [2], [4]
and the literature cited herein.

One of the motivations of finding general strong laws of large numbers comes
from that the finding, as proved by Cairoli [1], that classical maximal probabil-
ity inequalities for random sequences are not valid in general for random fields.
Besides, nonparametric estimation for random fields or spatial processes was given
increasing and simulated attention over the last few years as a consequence of grow-
ing demands from applied research areas (see for instance Guyon [6]). This results
in the serious motivation to extend the Hájek-Rényi type maximal inequality for
probabilities for random sequences, what the cited above authors tackled.

Our objective is to give a nontrivial generalization of some fundamental results
of these authors that will lead to positive answers to classical and non solved
SLLN’s. Before a more precise formulation of our problem, we need a few additional
notation.

From now on d is a fixed positive integer. The elements of Nd will be writ-
ten in font bold like n while their coordinate are written in the usual way like
n = (n1, . . . , nd). Nd is endowed with the usual partial ordering, that is n =
(n1, . . . , nd) ≤ m = (m1, . . . , nd) if and only if or each 1 ≤ i ≤ d, one has
ni ≤ mi. Further m < n means m ≤ n and n 6= m. We specially denote
(1, . . . , 1) ≡ 1 and (0, . . . , 0) ≡ 0. All the limits, unless specification, are meant as
n = (n1, . . . , nd) → ∞, that is equivalent to say that ni → ∞ for each 1 ≤ i ≤ d.
To finish, any family of real numbers (bn)n∈A indexed by a subset Nd is called a
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d-sequence. We intensively use product type d-sequences. A d-sequence (bn)n∈A is
of product type if it may be written in the form

bn =
∏

1≤i≤d

b(i)ni .

This product type d-sequence is unbounded and nondecreasing if and only if each
sequence b(i)ni is unbounded and nondecreasing in ni. Now with these minimum
notation, we are able to state the results of Tómács, Líbor and their co-authors.

On one hand, it is known that the Hájek-Rényi type maximal inequality (see [3])
is an important tool for proving SLLN’s for sequences. It is natural that Noszály
and Tómács [14] used a generalization of this result for random fields in order to
get SLLN’s for such objects. They stated

Proposition 1.1. Let r be a positive real number, an be a nonnegative d-sequence.
Suppose that bn is a positive, nondecreasing d-sequence of product type. Then

E(max
`≤n
|S`|r) ≤

∑
`≤n

a` ∀n ∈ Nd

implies

E
(

max
`≤n
|S`|rb−r`

)
≤ 4d

∑
`≤n

a`b
−r
` ∀n ∈ Nd.

From this, they were led to the following general SLLN for random fields.

Theorem 1.2. Let an, bn be non-negative d-sequences and let r > 0. Suppose
that bn is a positive, nondecreasing, unbounded d-sequence of product type. Let us
assume that ∑

n

an
brn

<∞

and
E
(

max
m≤n

|Sm|r
)
≤
∑
m≤n

am ∀n ∈ Nd.

Then
lim

n→∞

Sn

bn
= 0 a.s.

On an other hand, Tómács and Líbor [16], introduced a Hájek-Rényi inequal-
ity for probabilities and, subsequently, strong laws of large numbers for random
sequences but not for random fields. They obtained first:

Theorem 1.3. Let r be a positive real number, an be a sequence of nonnegative
real numbers. Then the following two statements are equivalent.
(i) There exists C > 0 such that for any n ∈ N and any ε > 0

P(max
`≤n
|S`| ≥ ε) ≤ Cε−r

∑
`≤n

a`.
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(ii) There exists C > 0 such that for any nondecreasing sequence (bn)n∈N of positive
real numbers, for any n ∈ N and any ε > 0

P
(

max
`≤n
|S`|b−1

` ≥ ε
)
≤ Cε−r

∑
`≤n

a`b
−r
` .

And next, they derived from it this SLLN.

Theorem 1.4. Let an and bn are non-negative sequences of real numbers and let
r > 0. Suppose that bn is a positive non-decreasing, unbounded sequence of positive
real numbers. Let us assume that ∑

n

an
brn

<∞

and there exists C > 0 such that for any n ∈ N and any ε > 0

P
(

max
m≤n

|Sm| ≥ ε
)
≤ C ε−r

∑
m≤n

am.

Then
lim
n→∞

Sn
bn

= 0 a.s.

As said previously, this paper aims at generalizing the previous results in the
following way. First, we give a random fields version for Tómács and Líbor [16] as
a first generalization in Proposition 2.1. Next we show that our version of Hájek-
Rényi type maximal inequality for probabilities for random fields is a generalization
of that of Noszály and Tómács [14] and leads to a more general SLLN.

We apply our method for logarithmically weighted sums without any moment
assumption and under general dependence conditions for random fields. This shows
that the generalization is not trivial.

The paper is organized as follows. Section 2 is devoted to our main results,
a Hájek-Rényi type maximal inequality for probabilities for random fields and
automatically a strong law of large numbers are given. Section 3 includes their
proofs. Section 4 including applications and illustration of our results, concludes
the paper.

2. Results

We first give a Hájek-Rényi type maximal inequality for probabilities for random
fields, as an extension of Proposition 1 in Noszály and Tómács [14] and of Theorem
2.1 in Tómács and Líbor [16].

Proposition 2.1. Let r be a positive real number, an be a nonnegative d-sequence.
Suppose that bn is a positive, nondecreasing d-sequence of product type. Then the
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following two statements are equivalent.
(i) There exists C > 0 such that for any n ∈ Nd and any ε > 0

P(max
`≤n
|S`| ≥ ε) ≤ Cε−r

∑
`≤n

a`.

(ii) There exists C > 0 such for any n ∈ Nd and any ε > 0

P
(

max
`≤n
|S`|b−1

` ≥ ε
)
≤ 4dC ε−r

∑
`≤n

a`b
−r
` .

We derive from this proposition a general strong law of large numbers for ran-
dom fields which includes extensions of Theorem 3 in Noszály and Tómács [14] and
of Theorem 2.4 in Tómács and Líbor [16]. But we need this lemma first.

Lemma 2.2 (Lemma 2 in Noszály and Tómács [14]). Let an be a nonnegative d-
sequence and let bn be a positive, nondecreasing, unbounded d-sequence of product
type. Suppose that

∑
n
an
brn
<∞ with a fixed real r > 0. Then there exists a positive,

nondecreasing, unbounded d-sequence βn of product type for which

lim
n

βn

bn
= 0 and

∑
n

an
βrn

<∞.

Here is our general strong law of large numbers.

Theorem 2.3. Let an be a non-negative d-sequence and let r > 0. Suppose that
bn is a positive, non-decreasing, unbounded d-sequence of product type. If∑

n

an
brn

<∞

and there exists C > 0 such that for any n ∈ Nd and any ε > 0

P
(

max
m≤n

|Sm| ≥ ε
)
≤ C ε−r

∑
m≤n

am

then

lim
n→∞

Sn

bn
= 0 a.s.

3. Proofs of the main results

We will need Lemma 2.2 and these two following lemmas.
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Lemma 3.1. Let {Yk,k ∈ Nd} be a field of random variables defined on a fixed
probability space (Ω,F ,P). Then for all x ∈ R,

P
(

sup
k
Yk > x

)
= lim

n→∞
P
(

max
k≤n

Yk > x

)
.

Proof. It is easy to see that, for all x ∈ R.(
sup
k
Yk > x

)
=
∞⋃

n=1

(
max
k≤n

Yk > x

)
.

Hence, by the monotone convergence theorem for probabilities, we get the state-
ment.

Lemma 3.2. Let {Yk,k ∈ Nd} be a field of random variables defined on a fixed
probability space (Ω,F ,P) and {εn,n ∈ Nd} a nondecreasing field of real numbers.
If

lim
n→∞

P
(

sup
k
Yk > εn

)
= 0,

then supkYk <∞ a.s.

Proof. By using the monotone convergence theorem for probabilities, we have

P

( ∞⋂
n=1

(
sup
k
Yk > εn

))
= lim

n→∞
P
(

sup
k
Yk > εn

)
= 0

which is equivalent to P (
⋃∞

n=1 (supk Yk ≤ εn)) = 1. This implies that there exists
nω ∈ Nd for almost every ω ∈ Ω such that supk Yk(ω) ≤ εnω <∞.

We need more notation for the proofs. In Nd the maximum is defined coor-
dinate-wise (actually we shall use it only for rectangles). If n = (n1, . . . , nd) ∈ Nd,
then 〈n〉 =

∏d
i=1 ni. A numerical sequence an,n ∈ Nd is called d-sequence. If

an is a d-sequence then its difference sequence, i.e. the d-sequence bn for which∑
m≤n bm = an,n ∈ Nd, will be denoted by ∆an (i.e. ∆an = bn). We shall say that

a d-sequence an is of product type if an =
∏d
i=1 a

(i)
ni , where a

(i)
ni (ni = 0, 1, 2, . . . )

is a (single) sequence for each i = 1, . . . , d. Our consideration will be confined
to normalizing constants of product type: bn will always denote bn =

∏d
i=1 b

(i)
ni ,

where b(i)ni (ni = 0, 1, 2, . . . ) is a nondecreasing sequence of positive numbers for each
i = 1, . . . , d. In this case we shall say that bn is a positive nondecreasing d-sequence
of product type. Moreover, if for each i = 1, . . . , d the sequence b(i)ni is unbounded,
then bn is called positive, nondecreasing, unbounded d-sequence of product type.
As usual, log+(x) := max{1, log(x)}, x > 0 and | logn| :=

∏d
m=1 log+ nm.

Proof of Proposition 2.1. It is clear that (ii) implies (i) by taking bmj = 1 for all
m ∈ Nd and 1 ≤ j ≤ d. Now we turn to (i) =⇒ (ii). We can assume without
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loss of generality that b0,j = 1 for 1 ≤ j ≤ d. If not, we would replace bm by∏d
j=1 bm,j/b0,j , m ∈ Nd and (ii) would remain true with a new constant equal to

Cb−r0 = C(
∏d
j=1 b0,j)

−r. Now consider a fixed n ∈ Nd and an arbitrary a real
number c > 1. Remark by the monotonicity of (bm) that bmj

≥ 1 for all m ∈ Nd

and that the sequence (cp)p≥0 forms a partition of [1,+∞[. This implies that for
any m ∈ Nd, for any 1 ≤ j ≤ d, there exists a nonnegative integer ij such that
cij ≤ bmj < cij+1. Thus for i = (i1, . . . , id), we have that m ∈ Ai = {s ∈ Nd and
cij ≤ bsj < cij+1, j = 1, . . . , d}. Since this holds for all m ∈ Nd, we get

Nd =
⋃
i∈Nd

Ai.

Let us restrict ourselves to m ≤ n, and let us define

Ai,n = {s ∈ Nd, s ≤ n and cij ≤ bsj < cij+1, j = 1, . . . , d}.

Since cp →∞ as p→∞ and for m ∈ Ai,n, for 1 ≤ j ≤ d, bsj ≤ bnj ≤ max{bnk , 1 ≤
k ≤ d} <∞, the sets Ai,n are empty for large values of i. Then put kn = max{i :
Ai,n 6= ∅} < +∞ and we have

[0, n] =
⋃

i≤kn

Ai,n.

It is also noticeable that if m ≤ s ∈ Ai,n, then necessarily m is in some Ai′,n with
i′ ≤ i. As well let mi,n = maxAi,n ≤ n and define Di,n =

∑
m∈Ai,n

am where, by
convention, Di,n = 0 and mi,n = (0, . . . , 0) when Ai,n = ∅. From all that, we have

P
(

max
m≤n
|Sm|b−1

m ≥ ε
)
≤
∑
i≤kn

P
(

max
m∈Ai,n

|Sm|b−1
m ≥ ε

)
.

Since for m ∈ Ai,n, bm =
∏d
j=1 bmj ≥

∏d
j=1 c

ij and Ai,n ⊂ [0,mi,n], we get

P
(

max
m≤n
|Sm|b−1

m ≥ ε
)
≤
∑
i≤kn

P
(

max
m∈Ai,n

|Sm|b−1
m ≥ ε

)
≤

∑
i≤kn

P

 max
m∈Ai,n

|Sm| ≥ ε
d∏
j=1

cij

 .

Now by applying (i) one arrives at

P
(

max
m≤n
|Sm|b−1

m ≥ ε
)
≤Cε−r

∑
i≤kn

d∏
j=1

c−rij
∑

m≤mi,n

am ≤

Cε−r
∑
i≤kn

d∏
j=1

c−rij
∑
m≤i

Dm,n.
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By the remark made above, m ≤mi,n ∈ Ai,n implies that m is in some As,n where
s ≤ i and then by the definition of the Di,n on has

∑
m≤mi,n

am ≤
∑

m≤iDm,n and
next

P
(

max
m≤n
|Sm|b−1

m ≥ ε
)
≤ Cε−r

∑
i≤kn

d∏
j=1

c−rij
∑
m≤i

Dm,

which becomes by a straightforward manipulations on the ranges of the sums, and
where kn(j) stands for the j-th coordinate of kn,

P
(

max
m≤n
|Sm|b−1

m ≥ ε
)
≤ Cε−r

∑
m≤kn

Dm,n

∑
m≤i≤kn

d∏
j=1

c−rij ≤

Cε−r
∑
m≤kn

Dm,n

d∏
j=1

∑
mj≤ij≤kn(j)

c−rij =

Cε−r
∑
m≤kn

Dm,n

d∏
j=1

c−rmj − c−r(kn(j)+1)

1− c−r
≤ Cε−r

∑
m≤kn

Dm,n

d∏
j=1

c−rmj

1− c−r
,

since c > 1 and kn(j) + 1 > mj . Now, at this last but one step, we have

P
(

max
m≤n
|Sm|b−1

m ≥ ε
)
≤ Cε−r

(
cr

1− c−r

)d ∑
m≤kn

Dm,n

d∏
j=1

c−r(mj+1) ≤

Cε−r
(

cr

1− c−r

)d ∑
m≤kn

∑
s∈Am,n

as

d∏
j=1

c−r(mj+1).

Finally, taking into account the fact that for s ∈ Am,n, cmj+1 ≥ bsj , 1 ≤ j ≤ d,
that is

∏d
j=1c

r(mj+1) ≥ brs , we arrive at

P
(

max
m≤n
|Sm|b−1

m ≥ ε
)
≤ Cε−r

(
cr

1− c−r

)d ∑
m≤kn

∑
s∈Am,n

as
brs
≤

Cε−r
(

cr

1− c−r

)d ∑
m≤n

am
brm

.

Since c is arbitrary c > 1 and minc>1
cr

1−c−r = 4, we achieve the proof by

P
(

max
m≤n
|Sm|b−1

m ≥ ε
)
≤ 4d C ε−r

∑
m≤n

am
brm

.

Proof of Theorem 2.3. Let βn be the d-sequence obtained in the Lemma 2.2. Ac-
cording to Proposition 2.1

P
(

max
`≤m
|S`|β−1

` ≥ εk
)
≤ 4dCε−rk

∑
`≤m

a`β
−r
` ∀m ≤ n.
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By this fact we get for any fixed k ∈ Nd

P
(

sup
`≤m
|S`|β−1

` ≥ εk
)
≤ lim

m→∞
P
(

max
`≤m
|S`|β−1

` ≥ εk
)
≤ 4dCε−rk

∑
n

anβ
−r
n ,

where {εk,k ∈ Nd} a positive, nondecreasing, unbounded field of real numbers. So
we have by Lemma 2.2

lim
k→∞

P
(

sup
`
|S`|β−1

` ≥ εk
)

= 0.

Using Lemma 3.1

P
(

sup
`
|S`|β−1

` ≥ εk for all k ∈ Nd

)
= 0.

So we have by Lemma 3.2 sup` |S`|β−1
` <∞ a.s. Finally by Lemma 2.2

0 ≤ |Sn|
bn

=
|Sn|
βn

βn

bn
≤ sup

`
|S`|β−1

`

βn

bn
→ 0 a.s.

4. Conclusion

4.1. A first application: Logarithmically weighted sums

The following result is an extension of Theorem 7 in Noszály and Tómács [14] and
of Theorem 4.2 in Fazekas et al. [5]. In this Theorem, we do not need any moment
assumption in contrary of these above cited theorems.

Theorem 4.1. Let {Xn,n ∈ Nd} be a field of random variables. Let r > 1. We
assume there exists C > 0 such that for any m ∈ Nd and any ε > 0

P

max
`≤m

∑
k≤`

Xk

〈k〉
≥ ε

 ≤ Cε−r ∑
`≤m

1
〈`〉

.

Then
1

| log n|
∑
k≤n

Xk

〈k〉
→ 0 (n→∞) a.s.

Proof. Let us apply Theorem 2.3 with an = 1
〈n〉 and bn = | logn|. The proof is

achieved by remarking that for r > 1∑
n

an
brn

=
∑
n

1
| log n|r

1
〈n〉

<∞.
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4.2. A second application
By using Markov’s Inequality and applying our results (see Theorem 2.3), under
the same assumptions in Noszály and Tómács [14], we rediscover their results.

Acknowledgement. The paper was finalized while the second author was vis-
iting MAPMO, University of Orléans, France, in 2011. He expresses her warm
thanks to responsibles of MAPMO for kind hospitality. The authors also thank
the referee for his valuable comments and suggestions.
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Abstract
The problem studied in this paper is related to the Harmonicity of sections

from a Riemannian manifold (M, g) into its tangent bundle of order two T 2M
equipped with the Diagonal metric gD. First we introduce a connection on
Γ(T 2M) and we investigate the geometry and the harmonicity of sections as
maps from (M, g) to (T 2M, gD).

Keywords: Horizontal lift, vertical lift, harmonic maps.

MSC: 53A45, 53C20, 58E20

1. Introduction

Consider a smooth map φ : (Mm, g)→ (Nn, h) between two Riemannian manifolds,
then the energy functional is defined by

E(φ) =
1
2

∫
M

|dφ|2dvg (1.1)

(or over any compact subset K ⊂M).
A map is called harmonic if it is a critical point of the energy functional E (or

E(K) for all compact subsets K ⊂M). For any smooth variation {φ}t∈I of φ with

φ0 = φ and V = dφt
dt

∣∣∣
t=0

, we have

d

dt
E (φt)

∣∣∣∣
t=0

= −
∫
M

h (τ (φ) , V ) dvg, (1.2)

∗The authors would like to thank the referee for his useful remarks.
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where
τ(φ) = traceg∇dφ (1.3)

is the tension field of φ. Then we have

Theorem 1.1. A smooth map φ : (Mm, g)→ (Nn, h) is harmonic if and only if

τ(φ) = 0. (1.4)

If (xi)1≤i≤m and (yα)1≤α≤n denote local coordinates on M and N respectively,
then equation (1.4) takes the form

τ(φ)α =
(

∆φα + gijNΓαβγ
∂φβ

∂xi
∂φγ

∂xj

)
= 0, 1 ≤ α ≤ n, (1.5)

where ∆φα = 1√
|g|

∂
∂xi

(√
|g|gij ∂φ

α

∂xj

)
is the Laplace operator on (Mm, g) and NΓαβγ

are the Christoffel symbols on N . One can refer to [1, 4, 6, 7, 8, 9] for background
on harmonic maps.

2. Some results on horizontal and vertical lifts

Let (M, g) be an n-dimensional Riemannian manifold and (TM, π,M) be its tan-
gent bundle. A local chart

(U, xi)i=1...n

on M induces a local chart (π−1(U), xi, yj)i,j=1,...,n on TM . Denote by Γkij the
Christoffel symbols of g and by ∇ the Levi-Civita connection of g.
We have two complementary distributions on TM , the vertical distribution V and
the horizontal distribution H, defined by:

V(x,u) = Ker(dπ(x,u))

= {ai ∂
∂yi
|(x,u); ai ∈ R}

H(x,u) = {ai ∂
∂xi
|(x,u) − aiujΓkij

∂

∂yk
|(x,u); ai ∈ R},

where (x, u) ∈ TM , such that T(x,u)TM = H(x,u) ⊕ V(x,u).
Let X = Xi ∂

∂xi be a local vector field on M . The vertical and the horizontal lifts
of X are defined by

XV = Xi ∂

∂yi
(2.1)

XH = Xi δ

δxi
= Xi{ ∂

∂xi
− yjΓkij

∂

∂yk
} (2.2)

For consequences, we have ( ∂
∂xi )

H = δ
δxi , ( ∂

∂xi )
V = ∂

∂yi and ( δ
δxi ,

∂
∂yj )i,j=1,...,n

a local frame on TM .
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Remark 2.1.

1. if w = wi ∂
∂xi + wj ∂

∂yj ∈ T(x,u)TM , then its horizontal and vertical parts are
defined by

wh = wi
∂

∂xi
− wiujΓkij

∂

∂yk
∈ H(x,u)

wv = {wk + wiujΓkij}
∂

∂yk
∈ V(x,u)

2. if u = ui ∂
∂xi ∈ TxM then its vertical and horizontal lifts are defined by

uV = ui
∂

∂yi

uH = ui{ ∂

∂xi
− yjΓkij

∂

∂yk
}.

Proposition 2.2 (see [10]). Let F ∈ T1
p(M) be a tensor of type (1,p) (respectively,

G ∈ T0
p(M) a tensor of type (0,p)), then there exist a tensor γ(F ) ∈ T1

p−1(TM)
(respectively, γ(G) ∈ T0

p−1(TM)), localy defined by

γ(F ) = F kh1h2...hpy
h1

∂

∂yk
⊗ dxh2 ⊗ · · · ⊗ dxhp (2.3)

γ(G) = Gh1h2...hpy
h1dxh2 ⊗ · · · ⊗ dxhp (2.4)

where F = F ji1...ip
∂
∂xj ⊗ dx

i1 ⊗ · · · ⊗ dxip and G = Gi1...ipdx
i1 ⊗ · · · ⊗ dxip .

Definition 2.3. The Sasaki metric gs on the tangent bundle TM of M is given
by

1. gs(XH , Y H) = g(X,Y ) ◦ π

2. gs(XH , Y V ) = 0

3. gs(XV , Y V ) = g(X,Y ) ◦ π

for all vector fields X,Y ∈ Γ(TM).

In the general case, Sasaki metrics is considered in [2, 5, 7, 10].

Proposition 2.4 (see [6]). A vector fields X : (M, g)→ (TM, gs) is harmonic iff∑
i=1

Xk
ii = 0,

∑
i=1

RkiljX
j
i = 0.

where Xk
i (resp Xk

ij) are the components of the first (resp second) covariant differ-
ential of the vector field X.

From Proposition 2.4 we deduce
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Proposition 2.5. If X : (M, g)→ (TM, gs) is a harmonic vector field, then

traceg∇2X = 0, tracegR(X,∇∗X)∗ = 0.

Let M be an n-dimensional manifold. The tangent bundle of order 2 is the
natural bundle of 2-jets of differentiable curves, defined by:

T 2M = {j2
0γ ; γ : R0 →M, is a smooth curve at 0 ∈ R}

π2 : T 2M →M

j2
0γ 7→ γ(0)

A local chart (U, xi)i=1...n on M induces a local chart (π−1
2 (U), xi, yi, zi)i=1...n

on T 2M by the following formulae

xi = γi(0).

yi = d
dtγ

i(0).

zi = d2

dt2 γ
i(0).

Proposition 2.6. Let M, be an n-dimensional manifold, then TM is sub-bundle
of T 2M , and the map

i : TM → T 2M

j1
0f = j2

0 f̃ (2.5)

is an injective homomorphism of a natural bundles (not of vector bundles), where

f̃ i =
∫ t

0

f i(s)ds− tf i(0) + f i(0) i = 1 . . . n.

Proof. Locally if (U, xi) is a chart on M and (U, xi, yi) and (U, xi, yi, zi) are the
induced chart on TM and T 2M respectivelly, then we have i : (xi, yi) 7→ (xi, 0, yi),
it follows that i is an injective homomorphism. Remains to show that i is well
defined.
Let (U,ϕ) and (V, ψ) are a charts on M, for any vector j1

0f ∈ TM , if we denote

f̃(t) = ϕ−1(
∫ t

0

ϕ ◦ f(s)ds− tϕ ◦ f(0) + ϕ ◦ f(0))

f̂(t) = ψ−1(
∫ t

0

ψ ◦ f(s)ds− tψ ◦ f(0) + ψ ◦ f(0))

then we obtain

ϕ ◦ f̃(0) = ϕ ◦ f(0)
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= ϕ ◦ f̂(0)
d

dt
(ϕ ◦ f̃)(0) = 0

=
d

dt
(ϕ ◦ f̂)(0)

d2

dt2
(ϕ ◦ f̃)(0) =

d

dt
(ϕ ◦ f)(0)

=
d2

dt2
(ϕ ◦ f̂)(0)

which proves that j2
0 f̃ = j2

0 f̂ .

Theorem 2.7. Let (M, g) be a Riemannian manifold and ∇ be the Levi-Civita
connection. If TM ⊕ TM denotes the Whitney sum, then

S : T 2M → TM ⊕ TM
j2
0γ 7→ (γ̇(0), (∇γ̇(0)γ̇)(0)) (2.6)

is a diffeomorphism of natural bundles.

In the induced coordinate, we have

S : (xi, yi, zi) 7→ (xi, yi, zi + yjykΓijk) (2.7)

In the more general case, the difeomorphism S is considered in [3].
Remark 2.8. The diffeomorphism S determines a vector bundle structure on T 2M ,
for which S be an isomorphism of vector bundles, and i : TM → T 2M is an
injective homomorphism of vector bundles.

Definition 2.9. Let (M, g) be a Riemannian manifold and T 2M be its tangent
bundle of order 2 endowed with the vectorial structure induced by the diffeomor-
phism S. For any section σ ∈ Γ(T 2M), we define two vector fields on M by:

Xσ = P1 ◦ S ◦ σ
Yσ = P2 ◦ S ◦ σ (2.8)

where P1 and P2 denotes the first and the second projection from TM ⊕ TM on
TM .

Remark 2.10. We can easily verify that for all sections σ,$ ∈ Γ(T 2M) and α ∈ R,
we have

Xασ+$ = αXσ +X$

Yασ+$ = αYσ + Y$

From the Remarks 2.8 and 2.10 we can define a connection on Γ(T 2M).
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Definition 2.11. Let (M, g) be a Riemannian manifold and T 2M be its tangent
bundle of order 2 endowed with the vectorial structure induced by the diffeomor-
phism S. We define a connection on Γ(T 2M) by:

∇̂ : Γ(TM)× Γ(T 2M)→ Γ(T 2M)

(Z, σ) 7→ ∇̂Zσ = S−1((∇ZXσ,∇ZYσ)) (2.9)

where ∇ is the Levi-Civita connection on M .

From formula 2.7 and Definition 2.9 , it follows

Proposition 2.12. If (U, xi) is a chart on M and (σi, σi) are the components of
section σ ∈ Γ(T 2M) then

Xσ = σi
∂

∂xi

Yσ = (σk + σiσjΓkij)
∂

∂xk

From Theorem 2.7 and Remark 2.10 we have

Proposition 2.13. Let (M, g) be a Riemannian manifold and T 2M be its tangent
bundle of order 2, then

J : Γ(TM)→ Γ(T 2M)

Z = S−1(Z, 0) (2.10)

is an injective homomorphism of vector bundles.

Locally if (U, xi) is a chart onM and (U, xi, yi) and (U, xi, yi, zi) are the induced
chart on TM and T 2M respectivelly, then we have

J : (xi, yi) 7→ (xi, yi,−yjykΓijk) (2.11)

Definition 2.14. Let (M, g) be a Riemannian manifold and X ∈ Γ(TM) be a
vector field on M . For λ = 0, 1, 2, the λ-lift of X to T 2M is defined by

X0 = S−1
∗ (XH , XH)

X1 = S−1
∗ (XV , 0)

X2 = S−1
∗ (0, XV ) (2.12)

In the more general case, the λ-lift is considered in [3].

Theorem 2.15 (see [3]). Let (M, g) be a Riemannian manifold and R its tensor
curvature, then for all vector fields X,Y ∈ Γ(TM) and p ∈ T 2M we have

1. [X0, Y 0]p = [X,Y ]0p − (R(X,Y )u)1 − (R(X,Y )w)2
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2. [X0, Y i] = (∇XY )i

3. [Xi, Y j ] = 0.

where (u,w) = S(p) and i, j = 1, 2.

Definition 2.16. Let (M, g) be a Riemannian manifold. For any section σ ∈
Γ(T 2M) we define the vertical lift of σ to T 2M by

σV = S−1
∗ (XV

σ , Y
V
σ ) ∈ Γ(T (T 2M)). (2.13)

Remark 2.17. From Definition 2.9 and the formulae (2.5), (2.10), (2.12) and (2.13),
for all σ ∈ Γ(T 2M) and Z ∈ Γ(TM), we obtain

• σV = X1
σ + Y 2

σ

• (∇̂Zσ)V = (∇ZXσ)1 + (∇ZYσ)2

• Z1 = J(Z)V

• Z2 = i(Z)V

3. Metric diagonal and harmonicity

Using Definition 2.3 and formula (2.12), we have

Theorem 3.1. Let (M, g) be a Riemannian manifold and TM its tangent bundle
equipped with the Sasakian metric gs, then

gD = S−1
∗ (g̃ ⊕ g̃)

is the only metric that satisfies the following formulae

gD(Xi, Y j) = δij · g(X,Y ) ◦ π2 (3.1)

for all vector fields X,Y ∈ Γ(TM) and i, j = 0, . . . , 2, where g̃ is the metric defined
by

g̃(XH , Y H) =
1
2
gs(XH , Y H)

g̃(XH , Y V ) = gs(XH , Y V )

g̃(XV , Y V ) = gs(XV , Y V ),

gD is called the diagonal lift of g to T 2M .

Theorem 3.2. Let (M, g) be a Riemannian manifold and ∇̃ be the Levi-Civita
connection of the tangent bundle of order two T 2M equipped with the diagonal
metric gD. Then
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1. (∇̃X0Y 0)p = (∇XY )0 − 1
2 (R(X,Y )u)1 − 1

2 (R(X,Y )w)2,

2. (∇̃X0Y 1)p = (∇XY )1 + 1
2 (R(u, Y )X)0,

3. (∇̃X0Y 2)p = (∇XY )2 + 1
2 (R(w, Y )X)0,

4. (∇̃X1Y 0)p = 1
2 (Rx(u,X)Y ))0,

5. (∇̃X2Y 0)p = 1
2 (Rx(w,X)Y ))0,

6. (∇̃XiY j)p = 0

for all vector fields X,Y ∈ Γ(TM) and p ∈ Γ(T 2M), where i, j = 1, 2 and (u,w) =
S(p).

The proof of theorem 3.2 follows directly from Theorem 3.1 and the Kozul
formula.

Lemma 3.3. Let (M, g) be a Riemannian manifold and (TM, gs) be the tangent
bundle equipped with the Sasaki metric. If X,Y ∈ Γ(TM) are a vector fields and
(x, u) ∈ TM such that Xx = u, then we have

dxX(Yx) = Y H(x,u) + (∇YX)V(x,u).

Proof. Let (U, xi) be a local chart on M in x ∈ M and (π−1(U), xi, yj) be the
induced chart on TM , if Xx = Xi(x) ∂

∂xi |x and Yx = Y i(x) ∂
∂xi |x, then

dxX(Yx) = Y i(x)
∂

∂xi
|(x,Xx) + Y i(x)

∂Xk

∂xi
(x)

∂

∂yk
|(x,Xx),

thus the horizontal part is given by

(dxX(Yx))h = Y i(x)
∂

∂xi
|(x,Xx) − Y i(x)Xj(x)Γkij(x)

∂

∂yk
|(x,Xx)

= Y H(x,Xx)

and the vertical part is given by

(dxX(Yx))v = {Y i(x)
∂Xk

∂xi
(x) + Y i(x)Xj(x)Γkij(x)} ∂

∂yk
|(x,Xx)

= (∇YX)V(x,Xx).

Lemma 3.4. Let (M, g) be a Riemannian manifold and (T 2M, gD) be the tangent
bundle equipped with the diagonal metric. If Z ∈ Γ(TM) and σ ∈ Γ(T 2M) , then
we have

dxσ(Zx) = Z0
p + (∇̂Zσ)Vp . (3.2)

where p = σ(x).
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Proof. Using Lemma 3.3, we obtain

dxσ(Z) = dS−1(dXσ(Z), dYσ(Z))S(p)

= dS−1(Zh, Zh)S(p) + dS−1((∇ZXσ)v, (∇ZYσ)v)S(p)

= Z0
p + (∇̂Zσ)Vp .

Lemma 3.5. Let (M, g) be a Riemannian n-dimensional manifold and (T 2M, gD)
be its tangent bundle of order two equipped with the diagonal metric and let σ ∈
Γ(T 2M). Then the energy density associated with σ is

e(σ) =
n

2
+

1
2
‖∇̂σ‖2.

where ‖∇̂σ‖2 = tracegg(∇Xσ,∇Xσ) + tracegg(∇Yσ,∇Yσ).

Proof. Let (e1, . . . , en) be a local orthonormal frame on M , then

e(σ) =
1
2

n∑
i=1

gD(dσ(ei), dσ(ei))

Using formula 3.2 and Remark 2.17, we obtain

e(σ) =
1
2

n∑
i=1

gD(e0
i , e

0
i ) +

1
2

n∑
i=1

gD((∇̂eiσ)V , (∇̂eiσ)V )

=
n

2
+

1
2
‖∇̂σ‖2.

Theorem 3.6. Let (M, g) be a Riemannian manifold and (T 2M, gD) be its tangent
bundle of order two equipped with the diagonal metric. Then the tension field
associated with σ ∈ Γ(T 2M) is

τ(σ) = (traceg∇̂2σ)V + (traceg{R(Xσ,∇∗Xσ) ∗+R(Yσ,∇∗Yσ)∗})0. (3.3)

Proof. Let x ∈ M and {ei}ni=1 be a local orthonormal frame on M such that
∇eiej = 0, then

τ(σ)x =
n∑
i=1

(∇dσ(ei)dσ(ei))σ(x)

=
n∑
i=1

[
∇e0i+(∇eiσ)V

(
e0
i + (∇̂eiσ)V

)]
σ(x)
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From Theorem 3.2, we obtain

τ(σ)x =
n∑
i=1

{
∇e0i e

0
i +∇e0i (∇eiXσ)1 +∇e0i (∇eiYσ)2 +∇(∇eiXσ)1e

0
i

+∇(∇eiYσ)2e
0
i

}
σ(x)

=
n∑
i=1

{
(∇ei∇eiXσ)1

σ(x) + (∇ei∇eiYσ)2
σ(x) + (Rx(Xσ(x),∇eiXσ)ei)0

+ (Rx(Yσ(x),∇eiYσ)ei)0
}

Theorem 3.7. Let (M, g) be a Riemannian manifold and (T 2M, gD) be its tangent
bundle of order two equipped with the diagonal metric. A section σ : M → T 2M is
harmonic if and only the following conditions are verified

traceg(∇2Xσ) = 0,
traceg(∇2Yσ) = 0,
traceg{R(Xσ,∇∗Xσ) ∗+R(Yσ,∇∗Yσ)∗} = 0.

From Proposition 2.5 and Theorem 3.7 we obtain

Corollary 3.8. Let (M, g) be a Riemannian manifold and (T 2M, gD) be its tangent
bundle of order two equipped with the diagonal metric. If σ : M → T 2M is a section
such that Xσ and Yσ are harmonic vector fields, then σ is harmonic.

Corollary 3.9. Let (M, g) be a Riemannian manifold and (T 2M, gD) be its tangent
bundle of order two equipped with the diagonal metric. If σ : M → T 2M is a section
such that Xσ and Yσ are parallel, then σ is harmonic.

Theorem 3.10. Let (M, g) be a Riemannian compact manifold and (T 2M, gD) be
its tangent bundle of order two equipped with the diagonal metric. Then σ : M →
T 2M is a harmonic section if and only if σ is parallel (i.e ∇̂σ = 0).

Proof. If σ is parallel, from Corollary 3.9, we deduce that σ is harmonic. Inversely.
Let σt be a compactly supported variation of σ defined by σt = (1 + t)σ. From
Lemma 3.5 we have

e(σt) =
n

2
+

(t+ 1)2

2
‖∇̂σ‖2.

If σ is a critical point of the energy functional we have :

0 =
d

dt
E(σt)|t=0,

=
∫
M

‖∇̂σ‖2dvgD

Hence ∇̂σ = 0.
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Abstract
In this paper we will study the properties of ideals I(q)

c related to the
notion of I-convergence of sequences of real numbers. We show that I(q)

c

and I(q)∗
c -convergence are equivalent. We prove some results about modified

Olivier’s theorem for these ideals. For bounded sequences we show a connec-
tion between I(q)

c -convergence and regular matrix method of summability.

1. Introduction

In papers [9],and [10] the notion of I-convergence of sequences of real numbers is
introduced and its basic properties are investigated. The I-convergence generalizes
the notion of the statistical convergence (see[5]) and it is based on the ideal I of
subsets of the set N of positive integers.

Let I ⊆ 2N. I is called an admissible ideal of subsets of positive integers, if I
is additive (i.e. A,B ∈ I ⇒ A ∪B ∈ I), hereditary (i.e. A ∈ I, B ⊂ A⇒ B ∈ I),
containing all singletons and it doesn’t contain N. Here we present some examples
of admissible ideals. More examples can be found in the papers [7, 9, 10, 12].

(a) The class of all finite subsets of N form an admissible ideal usually denote by
If .

(b) Let % be a density function on N, then the set I% = {A ⊆ N : %(A) = 0}
is an admissible ideal. We will use the ideals Id, Iδ, Iu related to asymp-
totic,logarithmic,uniform density,respectively. For those densities for defini-
tions see [9, 10, 12, 13].

27
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(c) For any q ∈ (0, 1〉 the set I(q)
c = {A ⊆ N :

∑
a∈A a

−q < ∞} is an admissible
ideal. The ideal I(1)

c = {A ⊆ N :
∑
a∈A a

−1 < ∞} is usually denoted by Ic.
It is easy to see, that for any q1 < q2; q1, q2 ∈ (0, 1)

If ( I(q1)
c ( I(q2)

c ( Ic ( Id (1.1)

In this paper will we study the ideals I(q)
c . In particular the equivalence be-

tween I(q)
c , I(q)∗

c , Olivier’s like theorems for this ideals and characterization of I(q)
c -

convergent sequences by regular matrices.

2. The equivalence between I(q)
c and I(q)∗

c -convergence

Let us recall the notion of I-convergence of sequences of real numbers, (cf.[9, 10]).

Definition 2.1. We say that a sequence x = (xn)∞n=1 I-converges to a number L
and we write I − lim xn = L, if for each ε > 0 the set A(ε) = {n : |xn − L| ≥ ε}
belongs to the ideal I.

I-convergence satisfies usual axioms of convergence i.e. the uniqueness of limit,
arithmetical properties etc. The class of all I-convergent sequences is a linear
space. We will also use the following elementary fact.

Lemma 2.2. Let I1, I2 be admissible ideals such that I1 ⊂ I2. If I1 − limxn = L
then I2 − limxn = L.

In the papers [9, 10] there was defined yet another type of convergence related
to the ideal I.

Definition 2.3. Let I be an admissible ideal in N. A sequence x = (xn)∞n=1 of real
numbers is said to be I∗-convergent to L ∈ R (shortly I∗ − limxn = L) if there is
a set H ∈ I, such that for M = N \H = {m1 < m2 < . . .} we have, lim

k→∞
xmk = L.

It is easy to prove, that for every admissible ideal I the following relation
between I and I∗-convergence holds:

I∗ − limxn = L⇒ I − limxn = L.

Kostyrko, Šalát and Wilczynski in [9] give an algebraic characterization of ideals
I, for which the I and I∗-convergence are equal; it turns out that these ideals are
with the property (AP).

Definition 2.4. An admissible ideal I ⊂ 2N is said to satisfy the property (AP)
if for every countable family of mutually disjoint sets {A1, A2, . . .} belonging to I
there exists a countable family of sets {B1, B2, . . .} such that Aj4Bj is a finite set
for j ∈ N and

⋃∞
j=1Bj ∈ I.(A4B = (A \B) ∪ (B \A)).

For some ideals it is already known whether they have property (AP)(see [9,
10, 12, 13]). Now, will show the equivalence between I(q)

c and I(q)∗
c -convergence.
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Theorem 2.5. For any 0 < q ≤ 1 the ideal I(q)
c has a property (AP).

Proof. It suffices to prove that any sequences (xn)∞n=1 of real numbers such that
I(q)
c − limxn = ξ there exist a set M = {m1 < m2 < . . . < mk < . . .} ⊆ N such

that N \M ∈ I(q)
c and lim

k→∞
xmk = ξ.

For any positive integer k let εk = 1
2k

and Ak = {n ∈ N : |xn − ξ| ≥ 1
2k
}. As

I(q)
c − limxn = ξ, we have Ak ∈ I(q)

c , i.e.∑
a∈Ak

a−q <∞.

Therefore there exist an infinite sequence n1 < n2 < . . . < nk . . . of integers
such that for every k = 1, 2, . . . ∑

a>nk
a∈Ak

a−q <
1
2k

Let H =
⋃∞
k=1[(nk, nk+1〉 ∩Ak]. Then∑

a∈H
a−q ≤

∑
a>n1
a∈A1

a−q +
∑
a>n2
a∈A2

a−q + . . .+
∑
a>nk
a∈Ak

a−q + . . . <

<
1
2

+
1
22

+ . . .+
1
2k

+ . . . < +∞

Thus H ∈ I(q)
c . Put M = N \H = {m1 < m2 < . . . < mk < . . .}. Now it suffices

to prove that lim
k→∞

xmk = ξ. Let ε > 0. Choose k0 ∈ N such that 1
2k0

< ε. Let

mk > nk0 . Then mk belongs to some interval (nj , nj+1〉 where j ≥ k0 and doesn’t
belong to Aj (j ≥ k0). Hence mk belongs to N \ Aj , and then |xmk − ξ| < ε for
every mk > nk0 , thus lim

k→∞
xmk = ξ.

3. Olivier’s like theorem for the ideals I(q)
c

In 1827 L. Olivier proved the results about the speed of convergence to zero of the
terms of a convergent series with positive and decreasing terms.(cf.[8, 11])

Theorem A. If (an)∞n=1 is a non-increasing sequences and
∑∞
n=1 an < +∞, then

lim
n→∞

n · an = 0.

Simple example an = 1
n if n is a square i.e. n = k2, (k = 1, 2, . . .) and an = 1

2n

otherwise shows that monotonicity condition on the sequence (an)∞n=1 can not be
in general omitted.
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In [14] T.Šalát and V.Toma characterized the class S(T ) of ideals such that

∞∑
n=1

an < +∞⇒ I − lim
n→∞

n · an = 0 (3.1)

for any convergent series with positive terms.

Theorem B. The class S(T ) consists of all admissible ideals I ⊆ P(N) such that
I ⊇ Ic.

From inclusions (1.1) is obvious that ideals I(q)
c do not belong to the class S(T ).

In what follows we show that it is possible to modify the Olivier’s condition∑∞
n=1 an < +∞ in such a way that the ideal I(q)

c will play the role of ideal Ic in
Theorem B.

Lemma 3.1. Let 0 < q ≤ 1. Then for every sequence (an)∞n=1 such that an >

0, n = 1, 2, . . . and
∑∞
n=1 an

q < +∞ we have I(q)
c − limn · an = 0.

Proof. Let the conclusion of the Lemma 3.1 doesn’t hold. Then there exists ε0 > 0
such that the set A(ε0) = {n : n · an ≥ ε0} doesn’t belong to I(q)

c . Therefore

∞∑
k=1

m−qk = +∞, (3.2)

where A(ε0) = {m1 < m2 < . . . < mk < . . .}. By the definition of the set A(ε0)
we have mk · amk ≥ ε0 > 0, for each k ∈ N . From this mq

k · aqmk ≥ εq0 > 0 and so
for each k ∈ N

aqmk ≥ ε
q
0 ·m

−q
k (3.3)

From (3.2) and (3.3) we get
∑∞
k=1 a

q
mk

= +∞, and hence
∑∞
n=1 a

q
n = +∞. But it

contradicts the assumption of the theorem.

Let’s denote by Sq(T ) the class of all admissible ideals I for which an analog
Lemma 3.1 holds. From Lemma 2.2 we have:

Corollary 3.2. If I is an admissible ideal such that I ⊇ I(q)
c then I ∈ Sq(T ).

Main result of this section is the reverse of Corollary 3.2.

Theorem 3.3. For any q ∈ (0, 1〉 the class Sq(T ) consists of all admissible ideals
such that I ⊇ I(q)

c .

Proof. It this sufficient to prove that for any infinite set M = {m1 < m2 < . . . <

mk < . . .} ∈ I(q)
c we have M ∈ I, too. Since M ∈ I(q)

c we have

∞∑
k=1

m−qk < +∞.
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Now we define the sequence (an)∞n=1 as follows

amk =
1
mk

(k = 1, 2, . . .),

an =
1

10n
for n ∈ N \M.

Obviously an > 0 and
∑∞
n=1 an

q < +∞ by the definition of numbers an. Since
I ∈ Sq(T ) we have

I − limn · an = 0.

This implies that for each ε > 0 we have

A(ε) = {n : n · an ≥ ε} ∈ I,

in particular M = A(1) ∈ I.

4. I(q)
c -convergence and regular matrix transforma-
tions

I(q)
c -convergence is an example of a linear functional defined on a subspace of the

space of all bounded sequences of real numbers. Another important family of such
functionals are so called matrix summability methods inspired by [1, 6]. We will
study connections between I(q)

c -convergence and one class of matrix summability
methods. Let us start by introducing a notion of regular matrix transformation
(see [4]).

Let A = (ank) (n, k = 1, 2, . . .) be an infinite matrix of real numbers. The
sequence (tn)∞n=1 of real numbers is said to be A-limitable to the number s if
lim
n→∞

sn = s, where

sn =
∞∑
k=1

anktk (n = 1, 2, . . .).

If (tn)∞n=1 is A-limitable to the number s, we write A− lim
n→∞

tn = s.
We denote by F (A) the set of all A-limitable sequences. The set F (A) is called

the convergence field. The method defined by the matrix A is said to be regular
provided that F (A) contains all convergent sequences and lim

n→∞
tn = t implies

A− lim
n→∞

tn = t. Then A is called a regular matrix.
It is well-known that the matrix A is regular if and only if satisfies the following

three conditions (see [4]):

(A) ∃K > 0,∀n = 1, 2, . . .
∑∞
k=1 |ank| ≤ K;

(B) ∀k = 1, 2, . . . lim
n→∞

ank = 0

(C) lim
n→∞

∑∞
k=1 ank = 1
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Let‘s ask the question: Is there any connection between I-convergence of se-
quence of real numbers andA-limit of this sequence? It is well know that a sequence
(xk)∞k=1 of real numbers Id-converges to real number ξ if and only if the sequence
is strongly summable to ξ in Caesaro sense. The complete characterization of sta-
tistical convergence (Id-convergence) is described by Fridy-Miller in the paper [6].
They defined a class of lower triangular nonnegative matrices T with properties:

n∑
k=1

ank = 1 ∀n ∈ N

if C ⊆ N such that d(C) = 0, then lim
n→∞

∑
k∈C

ank = 0.

They proved the following assertion:

Theorem C. The bounded sequence x = (xn)∞n=1 is statistically convergent to L
if and only if x = (xn)∞n=1 is A-summable to L for every A in T .

Similar result for Iu-convergence was shown by V. Baláž and T. Šalát in [1].
Here we prove analogous result for I(q)

c -convergence. Following this aim let’s define
the class Tq lower triangular nonnegative matrices in this way:

Definition 4.1. Matrix A = (ank) belongs to the class Tq if and only if it satisfies
the following conditions:

(I) lim
n→∞

∑n
k=1 ank = 1

(q) If C ⊂ N and C ∈ I(q)
c , then lim

n→∞

∑
k∈C ank = 0, 0 < q ≤ 1.

It is easy to see that every matrix of class Tq is regular. As the following example
shows the converse does not hold.

Example 4.2. Let C = {12, 22, 32, 42, . . . , n2, . . .} and q = 1. Obviously C ∈
I(1)
c = Ic. Now define the matrix A by:

a11 = 1, a1k = 0, k > 1

ank =
1

2k · lnn
, k 6= l2, k ≤ n

ank =
1

l lnn
, k = l2, k ≤ n

ank = 0, k > n

It is easy to show that A is lower triangular nonnegative regular matrix but
does not satisfy the condition (q) from Definition 4.1.∑

k<n2

k∈C

an2k =
1

lnn2
(1 +

1
2

+ . . .+
1
n

) ≥ lnn
2 lnn

=
1
2

9 0
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for n→∞. Therefore A /∈ T1.

Lemma 4.3. If the bounded sequence x = (xn)∞n=1 is not I-convergent then there
exist real numbers λ < µ such that neither the set {n ∈ N : xn < λ} nor the set
{n ∈ N : xn > µ} belongs to ideal I.

As the proof is the same as the proof on Lemma in [6] we will omit it.
Next theorem shows connection between I(q)

c -convergence of bounded sequence
of real numbers and A-summability of this sequence for matrices from the class Tq.

Theorem 4.4. Let q ∈ (0, 1〉. Then the bounded sequence x = (xn)∞n=1 of real
numbers I(q)

c -converges to L ∈ R if and only if it is A-summable to L ∈ R for each
matrix A ∈ Tq.

Proof. Let I(q)
c − limxn = L and A ∈ Tq. As A is regular there exists a K ∈ R

such that ∀n = 1, 2, . . .
∑∞
k=1 |ank| ≤ K.

It is sufficient to show that lim
n→∞

bn = 0, where bn =
∑∞
k=1 ank.(xk − L). For

ε > 0 put B(ε) = {k ∈ N : |xk − L| ≥ ε}. By the assumption we have B(ε) ∈ I(q)
c .

By condition (q) from Definition 4.1 we have

lim
n→∞

∑
k∈B(ε)

|ank| = 0 (4.1)

As the sequence x = (xn)∞n=1 is bounded, there exists M > 0 such that

∀k = 1, 2, . . . : |xk − L| ≤M (4.2)

Let ε > 0. Then

|bn| ≤
∑

k∈B( ε
2K )

|ank||xk − L| +
∑

k/∈B( ε
2K )

|ank||xk − L| ≤

≤M
∑

k∈B( ε
2K )

|ank| +
ε

2K

∑
k/∈B( ε

2K )

|ank| ≤

≤M
∑

k∈B( ε
2K )

|ank| +
ε

2
(4.3)

By part (q) of Definition 4.1 there exists an integer n0 such that for all n > n0∑
k∈B( ε

2K )

|ank| <
ε

2M

Together by (4.3) we obtain lim
n→∞

bn = 0.

Conversely, suppose that I(q)
c − limxn = L doesn’t hold. We show that there

exists a matrix A ∈ Tq such that A − lim
n→∞

xn = L does not hold, too. If I(q)
c −
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limxn = L
′ 6= L then from the firs part of proof it follows that A− lim

n→∞
xn = L

′

6= L for any A ∈ Tq. Thus, we may assume that (xn)∞n=1 is not I(q)
c -convergent,

and by the above Lemma 4.3 there exist λ and µ (λ < µ), such that neither the
set U = {k ∈ N : xk < λ} nor V = {k ∈ N : xk > µ} belongs to the ideal I(q)

c . It
is clear that U ∩ V = ∅. If U /∈ I(q)

c then
∑
i∈U i

−q = +∞ and if V /∈ I(q)
c then∑

i∈V i
−q = +∞. Let Un = U ∩ {1, 2, . . . , n} and Vn = V ∩ {1, 2, . . . , n}.

Now we define the matrix A = (ank) by the following way: Let s(1)n =∑
i∈Un i

−q for n ∈ U , s(2)n =
∑
i∈Vn i

−q for n ∈ V and s(3)n =
∑n
i=1 i

−q for
n /∈ U ∩ V . As U, V /∈ I(q)

c we have lim
n→∞

s(j)n = +∞, j = 1, 2, 3.

ank =



ank = k−q

s(1)n
n ∈ U and k ∈ Un,

ank = 0 n ∈ U and k /∈ Un,
ank = k−q

s(2)n
n ∈ V and k ∈ Vn,

ank = 0 n ∈ V and k /∈ Vn,
ank = k−q

s(3)n
n /∈ U ∩ V,

ank = 0 k > n,

Let’s check that A ∈ Tq. Obviously A is a lower triangular nonnegative matrix.
Condition (I) is clear from the definition of matrix A. Condition (q): Let B ∈ I(q)

c

and b =
∑
k∈B k

−q < +∞. Then∑
k∈B

ank ≤
1

s(3)n

∑
k∈B∩{1,...,n}

k−qχB(k) ≤ b

s(3)n
→ 0

for n→∞. Thus A ∈ Tq.
For n ∈ U

∞∑
k=1

ankxk =
1

s(1)n

n∑
k=1

k−qχU (k)xk <
λ

s(1)n

n∑
k=1

k−qχU (k) = λ

on other hand for n ∈ V
∞∑
k=1

ankxk =
1

s(2)n

n∑
k=1

k−qχV (k)xk >
µ

s(2)n

n∑
k=1

k−qχV (k) = µ.

Therefore A− lim
n→∞

xn does not exist.

Corollary 4.5. If 0 < q1 < q2 ≤ 1, then Tq2 $ Tq1 .

Proof. Let B ∈ I(q2)
c \ I(q1)

c and let (xn) = χB(n), n = 1, 2, . . . Clearly I(q2)
c −

limxn = 0 and I(q1)
c − limxn does not exist. Let A be the matrix constructed from

the sequence (xn)∞n=1 as in the proof of Theorem 4.4. In particular A ∈ Tq1 and
A− lim

n→∞
xn does not exist. Therefore A /∈ Tq2 .
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Further we show some type well-known matrix which fulfills condition (I). Let
(pj)∞j=1 be the sequence of positive real numbers. Put Pn = p1 + p2 + . . .+ pn.

Now we define matrix A = (ank) in this way:

ank =
pk
Pn

k ≤ n

ank = 0 k > n.

This type of matrix is called Riesz matrix.
Especially we put pn = nα, where 0 < α < 1. Then

ank =
kα

1α + 2α + . . .+ nα
k ≤ n

ank = 0 k > n.

This special class of matrix we denote by (R, nα). It is clear that this matrix fulfills
conditions (I) and (q). For this class of matrix is true following implication:

I(q)
c − limxk = L⇒ (R, nα)− limxk = L

where (xk)∞k=1 is a bounded sequence, 0 < q ≤ 1 , 0 < α < 1. Converse does
not hold. It is sufficient to choose the characteristic function of the set of all
primes P. Then (R, nα) − limxk = 0, but I(q)

c − limxk does not exist, because∑
n∈P n

−q = +∞, where P is a se of all primes. Hence the class (R, nα) of matrices
belongs to T \ Tq.

Problem 4.6. If we take any admissible ideal I and define the class TI of matrices
by replacing the condition (I) in Definition 4.1 by condition:if C ⊂ N and C ∈ I,
I admissible ideal on N then lim

n→∞

∑
k∈C |ank| = 0 then it is easy to see that the if

part of Theorem 4.4 holds for I too. The question is what about only if part.
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Abstract

We study the convexity of curves defined by the combination of control
points and blending functions, that are globally controlled. We provide a
method using which the convexity of the curve can be determined by the
location of one of its control points.
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1. Introduction

Convexity of curves is an important concept in Computer Aided Geometric Design.
We adopt the following definition of convex curves (see e.g. [4]).

Definition 1.1. A curve is convex if it is (a part of) the boundary of a convex
plane figure.

One can find other approaches, such as

• A (directed) plane curve is convex if it is on the same side of its (directed)
tangents (cf. [3]).

∗This research was carried out as a part of the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project
with support by the European Union, co-financed by the European Social Fund.
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• A curve is convex, if it is intersected by any hyperplane in at most two points
or it lies completely in the hyperplane. (c.f. [5], [1]) Therefore, convex curves
are plane curves (lie in two-dimensional planes). This is a bit more restrictive
than Definition 1.1, since excludes curves that contain straight line segments.

In [3] there is a comprehensive study on the convexity of directed parametric
curves. According to that treatment the same plane curve can be convex or concave
depending on its direction.

Based on the more traditional Definition 1.1 we study the global convexity of
control point based curves

g (u) =
n∑
j=0

Fj (u) dj , u ∈ [a, b] , (1.1)

where functions {Fi (u)}ni=0 are assumed to be at least twice continuously differen-
tiable.

Applying the moving control point concept, we propose a method that provides
both a visual aid for interactive convex curve design and a simple convexity check
algorithm for all curves defined by the combination of control points and blending
functions. In comparison with the already published results, the proposed method
is rather intuitive and easy to implement and use.

2. Singularity

We briefly summarize those results of [2] that we will utilize in the sequel. We let
control point di, i ∈ {0, 1, . . . , n} vary and fix the rest. Separating the fixed and
varying parts of (1.1) we obtain

g (u) = Fi (u) di + ri (u) , ri (u) =
n∑

j=0,j 6=i

Fj (u) dj . (2.1)

We assume that control point di has influence on the shape of the whole curve,
i.e. we suppose that the curve is globally controlled. Consequently, the proposed
method is not suitable for spline curves, i.e. for locally controlled curves.

Curve
ci (u) = − ṙi (u)

Ḟi (u)
(2.2)

is called the ith discriminant of curve (1.1).
Conditions for singularity are as follows.

• The locus of control point di that results a cusp on the curve (1.1) is the ith
discriminant (2.2).

• The locus of control point di that results a zero curvature point on the curve
(1.1) is the region in the plane that is covered by the tangent lines of the ith
discriminant (2.2).
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Figure 1: Singularity regions of a quartic Bézier curve with respect
to its control point d0.

• The locus of control point di that results a self-intersection point on the curve
(1.1) is the triangular region in the plane bounded by the curves

li (u) = − ri (b)− ri (u)
Fi (b)− Fi (u)

, u ∈ [a, b] , (2.3)

hi (δ) = − ri (a+ δ)− ri (a)
Fi (a+ δ)− Fi (a)

, δ ∈ (0, b− a]

and by the ith discriminant (2.2).

These singularities are illustrated in Fig. 1 for a quartic Bézier curve with
respect to its control point d0.

3. Convexity

As is known, if the curve (1.1) shares the variation diminishing property, then any
convex control polygon results a convex curve. However, the converse is not true
in general.

We assume that curve (1.1) has no inflection point, cusp and self-intersection
point, i.e. it is free of singularity. Under these circumstances, closed curves (g (a) =
g (b)) are convex. In case of open curves, however this is not necessarily true, the
two possible types of counterexamples can be seen in Fig. 2.
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Figure 2: Singularity free nonconvex open curves.

3.1. Case 1

The left hand side figure of Figure 2 shows that case when a tangent line can be
drawn from the endpoint g (b) to the curve, which means that ∃u ∈ [a, b) for which

ġ (u)× (g (u)− g (b)) = 0,

i.e., ∃λ ∈ R such that

λġ (u) = g (u)− g (b) .

Substituting (2.1) we obtain

di =
ri (u)− λṙi (u)− ri (b)
λḞi (u) + Fi (b)− Fi (u)

,

which is the parametric form of a straight line (with parameter λ). The λ = 0
point of this line is

ri (u)− ri (b)
Fi (b)− Fi (u)

that is on the curve (2.3), and the λ → ∞ point (which is a singularity of the
parametrization)

− ṙi (u)
Ḟi (u)

is on the discriminant (2.2). The direction vector of this line is

(ri (u)− ri (b)) Ḟi (u) + ṙi (u) (Fi (b)− Fi (u)) ,

therefore this line is the tangent line of curve (2.3) at u ∈ [a, b).
Thus, the locus of control point di that results case 1 is the plane region covered

by the tangent lines of the curve (2.3).
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3.2. Case 2
The right hand side figure of Figure 2 illustrates the case when the tangent line at
the endpoint g (b) intersects the curve, which means that ∃u ∈ [a, b) for which

ġ (b)× (g (u)− g (b)) = 0,

i.e., ∃λ ∈ R
λġ (b) = g (u)− g (b) .

After the substitution (2.1) we obtain

di =
ri (u)− λṙi (b)− ri (b)
λḞi (b) + Fi (b)− Fi (u)

which is the parametric form of a line, with parameter λ. The λ = 0 point of this
line is

ri (u)− ri (b)
Fi (b)− Fi (u)

,

which is on the curve (2.3), and the λ → ∞ point (which is a singularity of the
parametrization)

− ṙi (b)
Ḟi (b)

is on the discriminant (2.2). The direction vector of this line is

qi (u) = (ri (u)− ri (b)) Ḟi (b) + ṙi (b) (Fi (b)− Fi (u)) . (3.1)

Therefore, the locus of control point di that results case 2 is the plane region
covered by straight lines that are parallel to the direction (3.1) and pass through
the points of curve (2.3).

4. Convexity test

It is obvious, that if a curve has a self-intersection point then it is possible to draw
a tangent line from its endpoint g (b) to the curve such that the point of contact
differs from the endpoint itself, or the tangent line at the endpoint intersects the
curve. Therefore, self-intersecting curves fall into Case 1 or 2 above.

As a consequence of this, the following questions have to be answered in order
to determine convexity.

1. Does the curve (1.1) have a cusp or an inflection point?
It comprises the following steps:

• Is the control point di on the discriminant (2.2)?
• Is it possible to draw a tangent line from control point di to the dis-

criminant (2.2)? If the answer is yes, does the curvature change sign in
the neighborhood of the corresponding point on the curve (1.1)?
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2. Is it possible to draw a tangent line from control point di to the curve (2.3)?
(Case 1)

3. Is there a straight line parallel to the direction (3.1) that passes through the
corresponding point of curve (2.3)? (Case 2)

If all answers are negative then the curve is convex, otherwise it is concave. The
corresponding equations are

(di − ci (u))× ċi (u) = 0, u ∈ (a, b) , (4.1)

(di − li (u))× l̇i (u) = 0, u ∈ (a, b) , (4.2)

(di − li (u))× qi (u) = 0, u ∈ (a, b) , (4.3)

respectively. Since, the curve is planar, we can assume that it is in the x, y coor-
dinate plane, therefore only the third component of the cross products above may
differ from zero. Thus, equations (4.1–4.3) can be reduced to scalar equations, i.e.
we have to find zeros of functions of a single variable.

Actually, in cases (4.2) and (4.3) we do not need the zeros themselves, only
their existence is of interest. For the determination of their existence it is enough
to bracket the zero of the function, i.e. to find two values in the domain the
corresponding function values to which have different sign. Bracketing is also used
as a pre-processor to zero finding methods like bisection, secant or false position
(c.f. [6]).

In case of inflection point, however we have to find the zeros themselves, since
equality (4.1) guarantees only a vanishing curvature. A point with zero curvature
is an inflection point if the curvature changes its sign in the neighborhood of the
point.

This test works also for closed curves, and it is easier to answer question 2 than
to check self-intersection by means of the loop region described in Section 2.

5. Implementation

In principle, we can use any control point of the curve for the convexity test but
the usage of d0 seems to be the best choice in several cases, especially curves with
endpoint interpolation, such as the Bézier curve and its various extensions and
generalizations. (It is explained in more detail in [2].) In case of Bézier curves
basis functions are the Bernstein polynomials, i.e.

Fj (u) = Bnj (u) =
(
n

j

)
uj (1− u)n−j , (j = 0, 1, . . . , n)

with a = 0, b = 1. We describe the consideration above for the control point d0.
In this case

r0 (u) =
n∑
j=1

Bnj (u) dj ,
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Figure 3: A convex Bézier curve with concave control polygon.
While control point d0 is in the green region the curve remains

convex.

curve (2.3) becomes

l0 (u) = − r0 (1)− r0 (u)
Bn0 (1)−Bn0 (u)

=
dn − r0 (u)
Bn0 (u)

and direction q0 (u) is

q0 (u) = (r0 (u)− r0 (1)) Ḃn0 (1) + ṙ0 (1) (Bn0 (1)−Bn0 (u))
= −nBn0 (u) (dn − dn−1) ,

i.e. q0 (u) is parallel to the direction dn−dn−1 for any permissible value of u. Fig.
3 illustrates the different regions that are used for the convexity test for a Bézier
curve of degree 6.
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Abstract

Let k be a positive integer. A Roman k-dominating function on a graph
G is a labelling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has
at least k neighbors with label 2. A set {f1, f2, . . . , fd} of distinct Roman
k-dominating functions on G with the property that

∑d
i=1 fi(v) ≤ 2k for each

v ∈ V (G), is called a Roman (k, k)-dominating family (of functions) on G.
The maximum number of functions in a Roman (k, k)-dominating family on G
is the Roman (k, k)-domatic number of G, denoted by dkR(G). Note that the
Roman (1, 1)-domatic number d1

R(G) is the usual Roman domatic number
dR(G). In this paper we initiate the study of the Roman (k, k)-domatic
number in graphs and we present sharp bounds for dkR(G). In addition, we
determine the Roman (k, k)-domatic number of some graphs. Some of our
results extend those given by Sheikholeslami and Volkmann in 2010 for the

∗This research was in part supported by a grant from IPM (No. 90050043).
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Roman domatic number.
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1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E =
E(G). The order |V | of G is denoted by n = n(G). For every vertex v ∈ V ,
the open neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the closed
neighborhood of v is the set N [v] = N(v)∪{v}. The degree of a vertex v ∈ V (G) is
degG(v) = deg(v) = |N(v)|. The minimum and maximum degree of a graph G are
denoted by δ = δ(G) and ∆ = ∆(G), respectively. The open neighborhood of a set
S ⊆ V is the set N(S) = ∪v∈SN(v), and the closed neighborhood of S is the set
N [S] = N(S) ∪ S. The complement of a graph G is denoted by G. We write Kn

for the complete graph of order n and Cn for a cycle of length n. Consult [4, 15]
for the notation and terminology which are not defined here.

Let k be a positive integer. A subset S of vertices of G is a k-dominating set
if |NG(v) ∩ S| ≥ k for every v ∈ V (G) − S. The k-domination number γk(G)
is the minimum cardinality of a k-dominating set of G. A k-domatic partition
is a partition of V into k-dominating sets, and the k-domatic number dk(G) is
the largest number of sets in a k-domatic partition. The k-domatic number was
introduced by Zelinka [16]. Further results on the k-domatic number can be found
in the paper [5] by Kämmerling and Volkmann. For a good survey on the domatic
numbers in graphs we refer the reader to [1]. Recently more domatic parameters
are studied (see for instance [10, 11, 12]).

Let k ≥ 1 be an integer. Following Kämmerling and Volkmann [6], a Roman k-
dominating function (briefly RkDF) on a graph G is a labelling f : V (G)→ {0, 1, 2}
such that every vertex with label 0 has at least k neighbors with label 2. The
weight of a Roman k-dominating function is the value f(V (G)) =

∑
v∈V (G) f(v).

The minimum weight of a Roman k-dominating function on a graph G is called
the Roman k-domination number, denoted by γkR(G). Note that the Roman 1-
domination number γ1R(G) is the usual Roman domination number γR(G). A
γkR(G)-function is a Roman k-dominating function of G with weight γkR(G). A
Roman k-dominating function f : V → {0, 1, 2} can be represented by the ordered
partition (V0, V1, V2) (or (V f0 , V

f
1 , V

f
2 ) to refer to f) of V , where Vi = {v ∈ V |

f(v) = i}. In this representation, its weight is ω(f) = |V1|+2|V2|. Since V f1 ∪V
f
2 is

a k-dominating set when f is an RkDF, and since placing weight 2 at the vertices
of a k-dominating set yields an RkDF, in [6], it was observed that

γk(G) ≤ γkR(G) ≤ 2γk(G). (1.1)

A set {f1, f2, . . . , fd} of distinct Roman k-dominating functions on G with
the property that

∑d
i=1 fi(v) ≤ 2k for each v ∈ V (G) is called a Roman (k, k)-
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dominating family (of functions) on G. The maximum number of functions in a
Roman (k, k)-dominating family (briefly R(k, k)D family) on G is the Roman (k, k)-
domatic number of G, denoted by dkR(G). The Roman (k, k)-domatic number is
well-defined and

dkR(G) ≥ 1 (1.2)

for all graphs G since the set consisting of any RkDF forms an R(k, k)D family on
G and if k ≥ 2, then

dkR(G) ≥ 2 (1.3)

since the functions fi : V (G) → {0, 1, 2} defined by fi(v) = i for each v ∈ V (G)
and i = 1, 2 forms an R(k, k)D family on G of order 2. In the special case when
k = 1, d1

R(G) is the Roman domatic number dR(G) investigated in [8] and has been
studied in [9].

The definition of the Roman dominating function was given implicitly by Stew-
art [14] and ReVelle and Rosing [7]. Cockayne et al. [3] as well as Chambers et al.
[2] have given a lot of results on Roman domination.

Our purpose in this paper is to initiate the study of the Roman (k, k)-domatic
number in graphs. We first study basic properties and bounds for the Roman (k, k)-
domatic number of a graph. In addition, we determine the Roman (k, k)-domatic
number of some classes of graphs.

The next known results are useful for our investigations.

Proposition A (Kämmerling, Volkmann [6] 2009). Let k ≥ 1 be an integer, and
let G be a graph of order n. If n ≤ 2k, then γkR(G) = n. If n ≥ 2k + 1, then
γkR(G) ≥ 2k.

Proposition B (Kämmerling, Volkmann [6] 2009). Let G be a graph of order n.
Then γkR(G) < n if and only if G contains a bipartite subgraph H with bipartition
X,Y such that |X| > |Y | ≥ k and degH(v) ≥ k for each v ∈ X.

Proposition C (Kämmerling, Volkmann [6] 2009). If G is a graph of order n and
maximum degree ∆ ≥ k, then

γkR(G) ≥

⌈
2n

∆
k + 1

⌉
.

Proposition D (Sheikholeslami, Volkmann [8] 2010). If G is a graph, then

dR(G) = 1

if and only if G is empty.

Proposition E (Sheikholeslami, Volkmann [8] 2010). If G is a graph of order
n ≥ 2, then dR(G) = n if and only if G is the complete graph on n vertices.

Proposition F (Sheikholeslami, Volkmann [8] 2010). Let Kn be the complete graph
of order n ≥ 1. Then dR(Kn) = n.



48 A.P. Kazemi, S.M. Sheikholeslami, L. Volkmann

Proposition G (Sheikholeslami, Volkmann [13]). Let Kp,q be the complete bipar-
tite graph of order p + q such that q ≥ p ≥ 1. Then γkR(Kp,q) = p + q when
p < k or q = p = k, γkR(Kp,q) = k + p when p + q ≥ 2k + 1 and k ≤ p ≤ 3k and
γkR(Kp,q) = 4k when p ≥ 3k.

We start with the following observations and properties. The first observation
is an immediate consequence of (1.3) and Proposition D.

Observation 1.1. If G is a graph, then dkR(G) = 1 if and only if k = 1 and G is
empty.

Observation 1.2. If G is a graph and k ≥ 2 is an integer, then dkR(G) = 2 if and
only if G is trivial.

Proof. If G is trivial, then obviously dkR(G) = 2. Now let G be nontrivial and let
v ∈ V (G). Define f, g, h : V (G)→ {0, 1, 2} by

f(v) = 1 and f(x) = 2 if x ∈ V (G)− {v},

g(v) = 2 and g(x) = 1 if x ∈ V (G)− {v},

and
h(x) = 1 if x ∈ V (G).

It is clear that {f, g, h} is an R(k, k)D family of G and hence dkR(G) ≥ 3. This
completes the proof.

Observation 1.3. If G is a graph and k ≥ ∆(G) + 1 is an integer, then dkR(G) ≤
2k − 1.

Proof. If dkR(G) = 1, then the statement is trivial. Let dkR(G) ≥ 2. Since k ≥
∆(G)+1, we have γkR(G) = n. Let {f1, f2, . . . , fd} be an R(k, k)D family onG such
that d = dkR(G). Since f1, f2, . . . , fd are distinct, we may assume fi(v) = 2 for some
i and some v ∈ V (G). It follows from

∑d
j=1 fj(v) ≤ 2k that

∑
j 6=i fj(v) ≤ 2k − 2.

Thus d− 1 ≤ 2k − 2 as desired.

Observation 1.4. If k ≥ 2 is an integer, and G is a graph of order n ≥ 2k − 2,
then dkR(G) ≥ 2k − 1.

Proof. If V (G) = {v1, v2, . . . , vn}, then define fj : V (G) → {0, 1, 2} by fj(vj) = 2
and fj(x) = 1 for x ∈ V (G)−{vj} and 1 ≤ j ≤ 2k−2 and f2k−1 : V (G)→ {0, 1, 2}
by f2k−1(x) = 1 for each x ∈ V (G). Then f1, f2, . . . , f2k−1 are distinct with∑2k−1
i=1 fi(x) = 2k for each x ∈ {v1, v2, . . . , v2k−2} and

∑2k−1
i=1 fi(x) = 2k − 1

otherwise. Therefore {f1, f2, . . . , f2k−1} is an R(k, k)D family on G, and thus
dkR(G) ≥ 2k − 1.

The last two observations lead to the next result immediately.

Corollary 1.5. Let k ≥ 2 be an integer. If G is a graph of order n ≥ 2k − 2 and
k ≥ ∆(G) + 1, then dkR(G) = 2k − 1.
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Observation 1.6. If k ≥ 3 is an integer, and G is a graph of order n ≥ 2k − 4,
then dkR(G) ≥ 2k − 2.

Proof. If V (G) = {v1, v2, . . . , vn}, then define fj : V (G) → {0, 1, 2} by fj(vj) = 2
and fj(x) = 1 for x ∈ V (G) − {vj} and 1 ≤ j ≤ 2k − 4, f2k−3 : V (G) → {0, 1, 2}
by f2k−3(x) = 1 for each x ∈ V (G) and f2k−2 : V (G) → {0, 1, 2} by f2k−2(x) = 2
for each x ∈ V (G). Then f1, f2, . . . , f2k−2 are distinct with

∑2k−2
i=1 fi(x) = 2k for

each x ∈ V (G). Therefore {f1, f2, . . . , f2k−2} is an R(k, k)D family on G, and thus
dkR(G) ≥ 2k − 2.

Observation 1.7. Let k ≥ 2 be an integer. If G is a graph of order n ≤ 2k − 3
and k ≥ ∆(G) + 1, then dkR(G) ≤ 2k − 2.

Proof. If n = 1, then dkR(G) = 2 ≤ 2k − 2. Assume now that n ≥ 2. Let
{f1, f2, . . . , fd} be an R(k, k)D family on G such that d = dkR(G). Since k ≥
∆(G)+1, we observe that fi(x) ≥ 1 for each 1 ≤ i ≤ d and each x ∈ V (G). Suppose
to the contrary that d ≥ 2k−1. Since f1, f2, . . . , fd are distinct, there exists a vertex
u ∈ V (G) such that fs(u) = ft(u) = 2 for two indices s, t ∈ {1, 2, . . . , d} with s 6= t.
However, this leads to

d∑
i=1

fi(u) ≥
2k−1∑
i=1

fi(u) ≥ 4 + 2k − 3 = 2k + 1,

a contradiction. Therefore dkR(G) ≤ 2k − 2, and the proof is complete.

Theorem 1.8. Let k ≥ 1 be an integer, and let G be a graph of order n. If
k ≥ 3 · 2n−2, then dkR(G) = 2n.

Proof. Let {f1, f2, . . . , fd} be the set of all pairwise distinct functions from V (G)
into the set {1, 2}. Then fi is a Roman k-dominating function on G for 1 ≤ i ≤ d,
and it is well-known that d = 2n. The hypothesis k ≥ 3 · 2n−2 leads to

d∑
i=1

fi(v) =
2n∑
i=1

fi(v) = 2n−1 + 2n = 3 · 2n−1 ≤ 2k

for each vertex v ∈ V (G). Therefore {f1, f2, . . . , fd} is an R(k, k)D family on G
and thus dkR(G) ≥ 2n.

Now let f : V (G) −→ {0, 1, 2} be a Roman k-dominating function on G. Since
k ≥ 3 · 2n−2 > n > ∆(G), it is impossible that f(x) = 0 for any vertex x ∈ V (G).
Hence the number of Roman k-dominating functions on G is at most 2n and so
dkR(G) ≤ 2n. This yields the desired identity.

Observation 1.9. If k ≥ 1 is an integer, then γkR(Kn) = min{n, 2k}.
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Proof. If n ≤ 2k, then Proposition A implies that γkR(Kn) = n.
Assume now that n ≥ 2k+1. It follows from Proposition A that γkR(Kn) ≥ 2k.

Let V (Kn) = {v1, v2, . . . , vn}, and define f : V (Kn)→ {0, 1, 2} by f(v1) = f(v2) =
. . . = f(vk) = 2 and f(vj) = 0 for k + 1 ≤ j ≤ n. Then f is an RkDF on Kn of
weight 2k and thus γkR(Kn) ≤ 2k, and the proof is complete.

2. Properties of the Roman (k, k)-domatic number

In this section we present basic properties of dkR(G) and sharp bounds on the
Roman (k, k)-domatic number of a graph.

Theorem 2.1. Let G be a graph of order n with Roman k-domination number
γkR(G) and Roman (k, k)-domatic number dkR(G). Then

γkR(G) · dkR(G) ≤ 2kn.

Moreover, if γkR(G) · dkR(G) = 2kn, then for each R(k, k)D family {f1, f2, . . . , fd}
on G with d = dkR(G), each function fi is a γkR(G)-function and

∑d
i=1 fi(v) = 2k

for all v ∈ V .

Proof. Let {f1, f2, . . . , fd} be an R(k, k)D family on G such that d = dkR(G) and
let v ∈ V . Then

d · γkR(G) =
d∑
i=1

γkR(G)

≤
d∑
i=1

∑
v∈V

fi(v)

=
∑
v∈V

d∑
i=1

fi(v)

≤
∑
v∈V

2k

= 2kn.

If γkR(G) · dkR(G) = 2kn, then the two inequalities occurring in the proof
become equalities. Hence for the R(k, k)D family {f1, f2, . . . , fd} on G and for
each i,

∑
v∈V fi(v) = γkR(G), thus each function fi is a γkR(G)-function, and∑d

i=1 fi(v) = 2k for all v ∈ V .

Theorem 2.2. Let G be a graph of order n ≥ 2 and k ≥ 1 be an integer. Then
γkR(G) = n and dkR(G) = 2k if and only if G does not contain a bipartite subgraph
H with bipartition X,Y such that |X| > |Y | ≥ k and degH(v) ≥ k for each v ∈ X
and G has 2k or 2k−1 connected bipartite subgraphs Hi = (Xi, Yi) with |Xi| = |Yi|,
degHi(v) ≥ k for each v ∈ Xi and |{i | u ∈ Yi}| = |{i | u ∈ Xi}| = k for each
u ∈ V (G).
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Proof. Let γkR(G) = n and dkR(G) = 2k. It follows from Proposition B that G does
not contain a bipartite subgraph H with bipartition X,Y such that |X| > |Y | ≥ k
and degH(v) ≥ k for each v ∈ X. Let {f1, . . . , f2k} be a Roman (k, k)-dominating
family on G. By Theorem 2.1, γkR(G) = ω(fi) = n for each i. First suppose for
each i, there exists a vertex x such that fi(x) 6= 1. Assume that Hi is a subgraph
of G with vertex set V fi0 ∪ V

fi
2 and edge set E(V fi0 , V fi2 ). Since ω(fi) = n and

fi is a Roman k-dominating function, |V fi2 | = |V fi0 | and degHi(v) ≥ k for each
v ∈ V fi0 . By Theorem 2.1,

∑2k
i=1 fi(v) = 2k for each v ∈ V (G) which implies that

|{i | v ∈ V fi2 }| = |{i | v ∈ V fi0 }| = k for each v ∈ V (G). Now suppose fi(x) = 1
for each x ∈ V (G) and some i, say i = 2k. Define the bipartite subgraphs Hi for
1 ≤ i ≤ 2k − 1 as above.

Conversely, assume that G does not contain a bipartite subgraph H with bi-
partition X,Y such that |X| > |Y | ≥ k and degH(v) ≥ k for each v ∈ X and G
has 2k or 2k − 1 connected bipartite subgraphs Hi = (Xi, Yi) with |Xi| = |Yi| and
degHi(v) ≥ k for each v ∈ Xi. Then by Proposition B, γkR(G) = n. If G has 2k
connected bipartite subgraphs Hi, then the mappings fi : V (G)→ {0, 1, 2} defined
by

fi(u) = 2 if u ∈ Yi, fi(v) = 0 if v ∈ Xi, and fi(x) = 1 for each x ∈ V − (Xi ∪ Yi)

are Roman k-dominating functions on G and {fi | 1 ≤ i ≤ 2k} is a Roman (k, k)-
dominating family on G. If G has 2k − 1 connected bipartite subgraphs Hi, then
the mappings fi, g : V (G)→ {0, 1, 2} defined by g(x) = 1 for each x ∈ V (G) and

fi(u) = 2 if u ∈ Yi, fi(v) = 0 if v ∈ Xi, and fi(x) = 1 for each x ∈ V − (Xi ∪ Yi)

are Roman k-dominating functions on G and {g, fi | 1 ≤ i ≤ 2k − 1} is a Roman
(k, k)-dominating family on G.

Thus dkR(G) ≥ 2k. It follows from Theorem 2.1 that dkR(G) = 2k, and the proof
is complete.

The next corollary is an immediate consequence of Proposition C, Observation
1.3 and Theorem 2.1.

Corollary 2.3. For every graph G of order n, dkR(G) ≤ max{∆, k − 1}+ k.

Let A1 ∪A2 ∪ . . .∪Ad be a k-domatic partition of V (G) into k-dominating sets
such that d = dk(G). Then the set of functions {f1, f2, . . . , fd} with fi(v) = 2 if
v ∈ Ai and fi(v) = 0 otherwise for 1 ≤ i ≤ d is an R(k, k)D family onG. This shows
that dk(G) ≤ dkR(G) for every graph G. Since γkR(G) ≥ min{n, γk(G)+k} (cf. [6]),
for each graph G of order n ≥ 2, Theorem 2.1 implies that dkR(G) ≤ 2kn

min{n,γk(G)+k} .
Combining these two observations, we obtain the following result.

Corollary 2.4. For any graph G of order n,

dk(G) ≤ dkR(G) ≤ 2kn
min{n, γk(G) + k}

.
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Theorem 2.5. Let Kn be the complete graph of order n and k a positive integer.
Then dkR(Kn) = n if n ≥ 2k, dkR(Kn) ≤ 2k− 1 if n ≤ 2k− 1 and dkR(Kn) = 2k− 1
if k ≥ 2 and 2k − 2 ≤ n ≤ 2k − 1.

Proof. By Proposition F, we may assume that k ≥ 2. Assume that V (Kn) =
{x1, x2, ..., xn}. First let n ≥ 2k. Since Observation 1.9 implies that γkR(Kn) =
2k, it follows from Theorem 2.1 that dkR(Kn) ≤ n. For 1 ≤ i ≤ n, define now
fi : V (Kn)→ {0, 1, 2} by

fi(xi) = fi(xi+1) = . . . = fi(xi+k−1) = 2 and fi(x) = 0 otherwise,

where the indices are taken modulo n. It is easy to see that {f1, f2, . . . , fn} is an
R(k, k)D family on G and hence dkR(Kn) ≥ n. Thus dkR(Kn) = n.

Now let n ≤ 2k − 1. Then Observation 1.9 yields γkR(Kn) = n, and it follows
from Theorem 2.1 that dkR(Kn) ≤ 2k. Suppose to the contrary that dkR(Kn) =
2k. Then by Theorem 2.1, each Roman k-dominating function fi in any R(k, k)D
family {f1, f2, , . . . , f2k} on G is a γkR(G)-function. This implies that fi(x) = 1
for each x ∈ V (Kn). Hence f1 ≡ f2 ≡ · · · ≡ f2k which is a contradiction. Thus
dkR(Kn) ≤ 2k − 1.

In the special case k ≥ 2 and 2k − 2 ≤ n ≤ 2k − 1, Observation 1.4 shows that
dkR(Kn) ≥ 2k − 1 and so dkR(Kn) = 2k − 1.

In view of Proposition G and Theorem 2.1 we obtain the next upper bounds
for the Roman (k, k)-domatic number of complete bipartite graphs.

Corollary 2.6. Let Kp,q be the complete bipartite graph of order p + q such that
q ≥ p ≥ 1, and let k be a positive integer. Then dkR(Kp,q) ≤ 2k if p < k or
q = p = k, dkR(Kp,q) ≤ 2k(p+q)

k+p if p+q ≥ 2k+1 and k ≤ p ≤ 3k and dkR(Kp,q) ≤ p+q
2

if p ≥ 3k.

For some special cases of complete bipartite graphs, we can prove more.

Corollary 2.7. Let Kp,p be the complete bipartite graph of order 2p, and let k be
a positive integer. If p ≥ 3k, then dkR(Kp,p) = p. If p < k, then dkR(Kp,p) ≤ 2k− 1.
In particular, if p = k − 1, then dkR(Kp,p) = 2k − 1, and if p = k − 2, then
dkR(Kp,p) = 2k − 2.

Proof. Assume first that p ≥ 3k. Let X = {u1, u2, . . . , up} and Y = {v1, v2, . . . , vp}
be the partite sets of the complete bipartite graph Kp,p. For 1 ≤ i ≤ p, define
fi : V (Kp,p)→ {0, 1, 2} by

fi(ui) = fi(ui+1) = . . . = fi(ui+k−1) = fi(vi) = fi(vi+1) = . . . = fi(vi+k−1) = 2

and fi(x) = 0 otherwise, where the indices are taken modulo p. It is a simple
matter to verify that {f1, f2, . . . , fp} is an R(k, k)D family on Kp,p and hence
dkR(Kp,p) ≥ p. Using Corollary 2.6 for p = q ≥ 3k, we obtain dkR(Kp,p) = p.

Assume next that p < k. Since k > p = ∆(Kp,p), it follows from Observation
1.3 that dkR(Kp,p) ≤ 2k − 1.
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Assume now that p = k− 1. Then k ≥ 2 and n(Kp,p) = 2k− 2, and we deduce
from Observation 1.4 that dkR(Kp,p) ≥ 2k − 1 and so dkR(Kp,p) = 2k − 1.

Finally, assume that p = k − 2. Then k ≥ 3 and n(Kp,p) = 2k − 4. It
follows from Observation 1.6 that dkR(Kp,p) ≥ 2k − 2 and from Observation 1.7
that dkR(Kp,p) ≤ 2k − 2 and thus dkR(Kp,p) = 2k − 2.

Theorem 2.8. If G is a graph of order n ≥ 2, then

γkR(G) + dkR(G) ≤ n+ 2k (2.1)

with equality if and only if γkR(G) = n and dkR(G) = 2k or γkR(G) = 2k and
dkR(G) = n.

Proof. If dkR(G) ≤ 2k − 1, then obviously γkR(G) + dkR(G) ≤ n+ 2k − 1. Let now
dkR(G) ≥ 2k. If γkR(G) ≥ 2k, Theorem 2.1 implies that dkR(G) ≤ n. According to
Theorem 2.1, we obtain

γkR(G) + dkR(G) ≤ 2kn
dkR(G)

+ dkR(G). (2.2)

Using the fact that the function g(x) = x+(2kn)/x is decreasing for 2k ≤ x ≤
√

2kn
and increasing for

√
2kn ≤ x ≤ n, this inequality leads to the desired bound

immediately.
Now let γkR(G) ≤ 2k − 1. Since min{n, γk(G) + k} ≤ γkR(G), we deduce

that γkR(G) = n. According to Theorem 2.1, we obtain dkR(G) ≤ 2k and hence
dkR(G) = 2k. Thus

γkR(G) + dkR(G) = n+ 2k.

If γkR(G) = n and dkR(G) = 2k or γkR(G) = 2k and dkR(G) = n, then obviously
γkR(G) + dkR(G) = n+ 2k.

Conversely, let equality hold in (2.1). It follows from (2.2) that

n+ 2k = γkR(G) + dkR(G) ≤ 2kn
dkR(G)

+ dkR(G) ≤ n+ 2k,

which implies that γkR(G) = 2kn
dkR(G)

and dkR(G) = 2k or dkR(G) = n. This completes
the proof.

The special case k = 1 of the next result can be found in [8].

Theorem 2.9. For every graph G and positive integer k,

dkR(G) ≤ δ(G) + 2k.

Moreover, the upper bound is sharp.
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Proof. If dkR(G) ≤ 2k, the result is immediate. Let now dkR(G) ≥ 2k + 1 and let
{f1, f2, . . . , fd} be an R(k, k)D family on G such that d = dkR(G). Assume that v is
a vertex of minimum degree δ(G). Let ` be the number of sums

∑
u∈N [v] fi(u) = 1

and let m be the number of those sums in which
∑
u∈N [v] fi(u) = 2. Obviously,

l + 2m ≤ 2k.
We may assume, without loss of generality, that the equality

∑
u∈N [v] fi(u) = 1

holds for i = 1, . . . , `, if any, and the equality
∑
u∈N [v] fi(u) = 2 holds for i =

` + 1, . . . , ` + m when m ≥ 1. In this case fi(v) = 1 and fi(u) = 0 for each
u ∈ N(v) and i = 1, . . . , ` and fi(v) = 2 and fi(u) = 0 for each u ∈ N(v)
and i = ` + 1, . . . , ` + m. Thus fi(v) = 0 for ` + m + 1 ≤ i ≤ d, and thus∑
u∈N [v] fi(u) ≥ 2k for `+m+ 1 ≤ i ≤ d. Altogether we obtain

2k(d− (`+m)) + `+ 2m ≤
d∑
i=1

∑
u∈N [v]

fi(u)

=
∑

u∈N [v]

d∑
i=1

fi(u)

≤
∑

u∈N [v]

2k

= 2k(δ(G) + 1).

If m = 0, then the above inequality chain leads to

d ≤ δ(G) + 1 + `− `/(2k).

Since the function g(x) = x + x/(2k) is increasing for 0 ≤ x ≤ 2k, we deduce the
desired bound as follows

d ≤ δ(G) + 1 + `− `/(2k) ≤ δ(G) + 1 + 2k − (2k)/(2k) = δ(G) + 2k.

Now let m ≥ 1. Then we obtain

d ≤ δ(G) + (`+m) +
2k − `− 2m

2k
.

Since the last fraction in the sum is a rational number in [0, 1] and since m ≥ 1,
we deduce that

d ≤ δ(G)+(`+m)+
2k − `− 2m

2k
≤ δ(G)+(`+m)+1 ≤ δ(G)+`+2m ≤ δ(G)+2k

as desired.
To prove the sharpness of this inequality, let Gi be a copy of Kk3+(2k+1)k with

vertex set V (Gi) = {vi1, vi2, . . . , vik3+(2k+1)k} for 1 ≤ i ≤ k and let the graph G be
obtained from ∪ki=1Gi by adding a new vertex v and joining v to each vi1, . . . , vik.
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Define the Roman k-dominating functions fsi , hl for 1 ≤ i ≤ k, 0 ≤ s ≤ k − 1 and
1 ≤ l ≤ 2k as follows:

fsi (vi1) = · · ·= fsi (vik) = 2, fsi (vj(i−1)k2+(s+1)k+1) = · · ·= fsi (vj(i−1)k2+(s+1)k+k) = 2

if j ∈ {1, 2, . . . , k} − {i} and fsi (x) = 0 otherwise

and for 1 ≤ l ≤ 2k,

hl(v) = 1, hl(vik3+lk+1) = . . . = hl(vik3+lk+k) = 2 (1 ≤ i ≤ k),
and hl(x) = 0 otherwise.

It is easy to see that fsi and gl are Roman k-dominating function on G for each
1 ≤ i ≤ k, 0 ≤ s ≤ k − 1, 1 ≤ l ≤ 2k and {fsi , gl | 1 ≤ i ≤ k, 0 ≤ s ≤ k − 1 and 1 ≤
l ≤ 2k} is a Roman (k, k)-dominating family on G. Since δ(G) = k2, we have
dkR(G) = δ(G) + 2k.

For regular graphs the following improvement of Theorem 2.9 is valid.

Theorem 2.10. Let k be a positive integer. If G is a δ(G)-regular graph, then

dkR(G) ≤ max{2k − 1, δ(G) + k} ≤ δ(G) + 2k − 1.

Proof. If k > ∆(G) = δ(G) then by Observation 1.7, dkR(G) ≤ 2k − 1 and the
desired bound is proved. If k ≤ ∆(G), then it follows from Corollary 2.3 that

dkR(G) ≤ δ(G) + k,

and the proof is complete.

As an application of Theorems 2.9 and 2.10, we will prove the following Nord-
haus-Gaddum type result.

Theorem 2.11. Let k ≥ 1 be an integer. If G is a graph of order n, then

dkR(G) + dkR(G) ≤ n+ 4k − 2, (2.3)

with equality only for graphs with ∆(G)− δ(G) = 1.

Proof. It follows from Theorem 2.9 that

dkR(G) + dkR(G) ≤ (δ(G) + 2k) + (δ(G) + 2k) = (δ(G) + 2k) + (n−∆(G)− 1 + 2k).

If G is not regular, then ∆(G) − δ(G) ≥ 1, and hence this inequality implies the
desired bound dkR(G) + dkR(G) ≤ n+ 4k − 2. If G is δ(G)-regular, then we deduce
from Theorem 2.10 that

dkR(G) + dkR(G) ≤ (δ(G) + 2k − 1) + (δ(G) + 2k − 1) = n+ 4k − 3,

and the proof of the Nordhaus-Gaddum bound (2.3) is complete. Furthermore, the
proof shows that we have equality in (2.3) only when ∆(G)− δ(G) = 1.
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Corollary 2.12 ([8]). For every graph G of order n,

dR(G) + dR(G) ≤ n+ 2,

with equality only for graphs with ∆(G) = δ(G) + 1.

For regular graphs we prove the following Nordhaus-Gaddum inequality.

Theorem 2.13. Let k ≥ 1 be an integer. If G is a δ-regular graph of order n, then

dkR(G) + dkR(G) ≤ max{4k − 2, n+ 2k − 1, n+ 3k − 2− δ, 3k + δ − 1}. (2.4)

Proof. Let δ(G) = δ and δ(G) = δ. We distinguish four cases.
If k ≥ δ + 1 and k ≥ δ + 1, then it follows from Observation 1.7 that

dkR(G) + dkR(G) ≤ (2k − 1) + (2k − 1) = 4k − 2.

If k ≤ δ and k ≤ δ, then Corollary 2.3 implies that

dkR(G) + dkR(G) ≤ (δ + k) + (δ + k) = δ + 2k + n− 1− δ = n+ 2k − 1.

If k ≥ δ+ 1 and k ≤ δ, then we deduce from Observation 1.7 and Corollary 2.3
that

dkR(G) + dkR(G) ≤ (2k − 1) + (δ + k) = 3k − 1 + n− 1− δ = n+ 3k − 2− δ.

If k ≤ δ and k ≥ δ + 1, then Observation 1.7 and Corollary 2.3 lead to

dkR(G) + dkR(G) ≤ (δ + k) + (2k − 1) = 3k + δ − 1.

This completes the proof.

If G is a δ-regular graph of order n ≥ 2, then Theorem 2.13 leads to the following
improvement of Theorem 2.11 for k ≥ 2.

Corollary 2.14. Let k ≥ 2 be an integer. If G is a δ-regular graph of order n ≥ 2,
then

dkR(G) + dkR(G) ≤ n+ 4k − 4.
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Abstract

In order to control software development, usually a set of criteria is fixed,
among other things defining limits for the size of modules and functions, guid-
ing layout principles etc. These criteria are not always observed, especially
if the criteria are specified after pieces of the code are already written – that
is, handling legacy code.

In this paper, we describe a method how the code base can semi auto-
matically improved to conform more to the development criteria. We define
a usage of a query language with which the user can employ our software
complexity metrics to identify the out-of-line code parts, and select a trans-
formation strategy that are automatically used by the tool to improve the
identified parts.

Keywords: erlang, refactoring, structural complexity metrics, metric, func-
tional language

1. Introduction

Measuring metrics in order to assist software development is not a new idea. In his
seminal paper, Thomas J. McCabe [10] reasoned about the importance of source
code measurement. He was investigating how programs can be modularised in
order to decrease the costs of testing.
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The application of complexity and other kinds of metrics yield interesting results
if we use them to measure large projects. Currently, we have measured the devel-
opment of RefactorErl [1, 2] itself, comparing various versions. Since RefactorErl
underwent a big change about one year ago, gaining a new layer with well-designed
interfaces, and some refactorings were greatly simplified with much tighter con-
nections to the interface modules, it was expected that the values of some metrics
would change substantially.

Table 1 shows the measurement results before and after the changes in the
analyzed code body. The rows labelled max show the three largest values.

RefactorErl Before upgrade After upgrade
Effective line of code (sum) 14518 32366
Effective line of code (avg) 308.89 425.868
Effective line of code (max) 812/701/745 8041/1022/770
Number of functions (sum) 1329 2648
Number of functions (avg) 17.038 21.7
Number of functions (max) 85/70/49 551/91/64
Max depth of cases (avg) 1.7 1.6
Max depth of cases (max) 4 4
Branches of recursion (sum) 201 750
Branches of recursion (avg) 6.931 18.75
Branches of recursion (max) 20/18/15 211/43/35
Num. of function clauses (sum) 1725 6778
Num. of function clauses (avg) 36.70 89.18
Num. of function clauses (max) 139/133/53 3251/303/165
Number of fun-expression (sum) 185 271
Number of fun-expression (avg) 5.138 4.839
Number of fun-expression (max) 20/18/17 31/26/22
Number of funpath (sum) 3911 10854
Number of funpath (avg) 83.21 142.81
Number of funpath (max) 261/224/196 3752/399/333

Table 1: Values of metrics in two versions of RefactorErl

Refactorings make use of the new interface layer, which abstracts away a lot
of code. Since these parts of the code are removed from the code of the refactor-
ings, the modules of the refactorings have become smaller in size and complexity.
Conversely, the number of connections between these modules and the query and
interface modules have increased.

The complexity of the code has decreased in many parts, increased in other
parts, but it is clear from the results that the complexity of the source code has
increased. Another factor that indicates an increase in complexity is that loading
the tool using takes an order of magnitude longer than before.

On the other hand, if we observe which metrics have increased and which ones
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have decreased, we can realize a correlation between the change in complexity
metrics and the rise of load time, namely the time spent on syntactic and semantic
analysis.

Measurements of this type can help solve several optimization problems, which
are connected to the duration of loading and that of analysis.

Knowing the relation among modules, the chains of function calls and the depth
of call chains help us show which sets of modules can be considered as clusters,
or which parts of the code are heavily connected. In earlier work this type of
measurements has been used to cluster modules and to carry out changes related
to clustering, but it has not been made available yet as a distinct metric.

Regarding measurements we can realize that certain metrics often change to-
gether. For example, if the Number of functions rises, then the number of funpath,
Number of funclauses and the Cohesion of modules and the Cohesion between
modules follows, and this has an influence on load time, by increasing the depth
and complexity of the syntax tree and the amount of the related semantic infor-
mation.

We can observe that the changes in the source code have brought significant
changes in the software metrics at several points. Some of the changes have im-
proved the values of the metrics, and some metrics have changed for the worse.
For large code bases, it is very hard to estimate the effect of individual changes
in the source code on the overall quality of the code without proper tool support.
An appropriate tool, on the other hand, indicates the current complexity of the
source code and potential error sources. Such feedback helps the software designer
to decide whether the development process is progressing as desired.

For large programs, it is imperative to be able to restructure the program so
that it becomes clearer, easier to maintain and to test. In order to achieve these
goals, it would be advantageous if the aforementioned tool would also support code
restructuring.

In the rest of the paper, can we find answers to the following questions.

1. Is it possible to track the changes in the complexity of the code when trans-
formations are made, and detect any problems that may arise?

2. We are seeking a method to automatically or semi-automatically improve the
source code based on the measured complexity.

3. How can we use the measured values of the metrics to enhance the process
of software development?

As an answer to these questions, we have implemented a system that can mea-
sure the structural complexity of Erlang programs.

The rest of the paper is structured as follows. In Section 2, we discuss how
complexity can be measured in functional languages. In Section 3, we describe
our representation and how we measure and store the values of the metrics. In
Section 4, we give an extension to our previous metrics query language with which
it is possible to run automated transformations based on the measured values of
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the metrics. This section contains the main contribution of the paper. Section 5
discusses related works and Section 6 concludes the paper.

2. Measuring functional languages

Several metrics developed for measuring imperative and object oriented languages
can readily be applied to measuring functional languages. This is possible be-
cause there are similarities in several constructs when regarded with a degree of
abstraction. As an example, a similar aspect of a library, a namespace, a class
and a module is that they all can be regarded as collections of functions. If the
chosen metric does not take the distinctive properties of these constructs into ac-
count (variables, method overrides, dynamic binding, visibility etc.), then it can
be applied to these apparently diverse constructs. Some other properties of func-
tional languages which bear such adaptable similarities to features in imperative
languages are: nesting levels (blocks, control structures), function relations (call
graph, data flow, control flow), inheritance versus cohesion, and simple cardinality
metrics (number of arguments).

Functional programming languages contain several constructs and properties
which are generally not present in imperative languages, thus require special at-
tention during adaptation:

• list comprehensions,

• expression evaluation laziness, lack of destructive assignment,

• lack of loop construct, which evokes heavy use of either

– tail recursion, or
– higher order functions,

• referential transparency of pure functions,

• pattern matching,

• currying.

While these features raise the expressive power of functional languages, most of
the existing complexity metrics require some changes before they become applicable
to functional languages. So far, we have been successful in converting the metrics
that we have encountered.

In addition to adapting existing metrics, we have introduced metrics that are
well suited in general and Erlang in particular. We would like to point out the
following findings.

• Branches of recursion measures the number of different cases where a function
calls itself. This metric can be applied to non-functional languages as well,
yet we did not see it defined elsewhere.
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• Several cardinality measures, such as the number of fun expressions, and
message passing constructs.

• The number of different return points of a function.

• We can measure metrics on a single clause of a function.

• We have extended metrics to take higher order functions into account, for
example, how many times a fun expression is called. Due to the dynamic
nature of Erlang, runtime function calls are hard to inspect, and we still have
to improve this aspect of this feature.

• We are planning to investigate message passing further, which will enable us
to make our metrics more precise.

• We are planning to measure OTP (Open Telecom Platform) [3] behaviours,
which will uncover currently hidden function calls.

2.1. Short description of the metrics
Here we present a short overview about our implemented metrics. Hereinafter there
is an enumeration of metrics which can be used as property in the extended query
language. In the tables 2, 3 and 4 we can find the original name of the metric
and its synonyms (one can use either the original name or any of the synonyms),
afterwards we can find their short definitions.

Metrics for functions and modules
Name Synonyms
line_of_code loc
char_of_code coc
max_depth_of_calling max_depth_calling, max_depth_of_call,

max_depth_call
max_depth_of_cases max_depth_cases
number_of_funclauses num_of_funclauses, number_of_funclaus,

num_of_funclaus
branches_of_recursion branches_of_rec, branch_of_recursion,

branch_of_rec
mcCabe mccabe
number_of_messpass -
fun_return_points fun_return_point, function_return_points,

function_return_point

Table 2: List of metrics for modules and functions

Effective Line of code The number of lines in the text of the module’s or the
function’s source code excluding the empty lines.
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Characters of the code The number of characters in the text of the module’s
or the function’s source code.

Max depth of calling The length of function call-paths, namely the path with
the maximum depth. It gives the depth of non-recursive calls. Recursive calls are
covered by depth_of_recursion/1 function.

Max depth of cases Gives the maximum of case control structures nested in
case of the concrete function (how deeply are the case control structures nested).
In case of a module it measures the same regarding all the functions in the module.
Measuring does not break in case of case expressions, namely when the case is not
embedded into a case structure.

Number of funclauses The number of the given function’s function clauses
(which have the same name and same arity). In case of module it counts all of the
function clauses in the given module.

Branches of recursion Gives the number the given function’s branches i.e.,
how many times a function calls itself, and not the number of clauses it has besides
definition.

McCabe McCabe cyclomatic complexity metric. We define the complexity met-
ric in a control flow graph with the number of defined basic edges, namely the
number of outputs a function can have disregarding the number of function out-
puts functions within the function can have. Functions called each count as one
possible output.

The sum of the results measured on the given module’s functions is the same
as the sum measured on the module itself. This metric was developed to measure
procedural programs, but it can be used to measure the text of functional programs
as well. (in case of functional programs we measure functions).

Number of funexpr The number of function expressions in the given function
or module. (It does not count the call of function expressions, only their creation.)

Number of message passings In case of functions it counts the number of
code snippets implementing messages from a function, while in case of modules it
counts the total number of messages in all of the functions of the given module.

Function return points The number of the given function’s possible return
points. In case of module it is the sum of its function return points.

Calls for the function The number of calls for the given function. (It is not
equivalent with the number of other functions calling the given function, because
all of these other functions can refer to the measured one more than once.)
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Metrics only for functions
Name Synonyms
calls_for_function calls_for_fun, call_for_function,

call_for_fun
calls_from_function calls_from_fun, call_from_function,

call_from_fun
function_sum fun_sum

Table 3: List of metrics only for functions

Calls from the function The number of calls from a certain function, namely
how many times a function refers to another one. The result includes recursive
calls as well.

Function sum The sum calculated from the function’s complexity metrics that
characterises the complexity of the function. It is calculated using various metrics
together.

Metrics only for modules
Name Synonyms
number_of_fun num_of_fun, num_of_functions,

number_of_functions
number_of_macros num_of_macros, num_of_macr
number_of_records num_of_records, num_of_rec
included_files inc_files
imported_modules imp_modules, imported_mod, imp_mod
number_of_funpath number_of_funpathes, num_of_funpath,

num_of_funpathes
function_calls_out fun_calls_out
cohesion coh
otp_used otp
min_depth_of_calling min_depth_calling, min_depth_of_call,

min_depth_call
module_sum mod_sum

Table 4: List of metrics only for modules

Number of functions The number of functions implemented in the module,
excluding the non-defined functions.

Number of macros The number of defined macros in the module.

Number of records The number of defined records in the module.
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Number of included files The number of visible header files in the module.

Imported modules The number of imported modules used in the given module.
The metric does does not take into account the number of qualified calls (calls that
have the following form: module:function).

Number of funpath The total number of function paths in the given module.
The metric, besides the number of internal function links, also contains the number
of external paths, or the number of paths that lead outward from the module.

Function calls into the module The number of function calls into the given
module from other modules.

Function calls from the module The number of function calls from the given
module towards other modules.

Cohesion of the module The number of call-paths of functions that call each
other in the module. By call-path we mean that an f1 function calls f2 (e.g.
f1()->f2().). If f2 also calls f1, then the two calls still count as one callpath.

Max depth of calling The maximum depth of function call chains within the
given module. It gives the depth of non-recursive calls.

Module sum The sum of function_sum for all functions in the given module.

3. Program graph representation

In [4], we have introduced an extensible architecture in which the definition and ac-
quisition of important attributes of the source code can be conveniently formulated.
When the source code is loaded, it is parsed into an abstract syntax tree, which
is then turned into a program graph by adding static semantic nodes and edges.
These semantic nodes and edges describe the important attributes and connections
of the source code: the call graph, the statically analysable properties of dynamic
constructs, the data flow necessary to track the spreading of values. The semantic
nodes currently comprise all information that is necessary for the calculation of
metrics, but the architecture is extensible: new semantic constructs can be added
easily.

The program graph, for our purposes, contains syntactic and semantic nodes
and edges. The abstract syntax tree built upon the represented source code forms
a subgraph of the program graph. In addition to this subgraph, the program
graph also contains nodes that describe semantical information, such as the binding
structure of variables. The edges of the program graph are directed, labelled, and
for each node, the outgoing edges having the same label are ordered.
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Low level query language. Information retrieval is supported by a low level
query language that makes it easy to traverse graph structures. This low level
query language consists of fixed length path expressions, which run starting from a
single node, can traverse edges in a forward or backward direction, and can filter
the resulting nodes in each step based on their contents.

Metrics are calculated by running several queries that collect syntactic and
semantic constructs, and then evaluating the information content of the resulting
nodes.

Summing it up, the calculation of complexity metrics takes place in three steps:

1. We construct the program graph of the source code. As we measure several
metrics on the same program graph, the program graph is already available.
During the static analysis of the source code, we construct the Abstract
Syntax Tree of the code, then we expand it from all the semantic information
gained with all of the static analyses. If we already have the semantic graph
at hand, then the process only takes two steps.

2. We execute the path expression that is appropriate for the metric. The result
of the path expressions defined on the constructed graph will be a list of nodes.
In most cases, the characteristic complexity metric can be calculated from
the result.

3. We calculate the value of the metric. For some metrics, this step is simply the
calculation of the cardinality of the resulting list (e.g. number of functions),
whereas for other metrics, filtering has to be done (e.g. internal cohesion of
the module). The result of this expression is a list of all the function nodes,
which are available on the defined graph path. The length of the list gives
the total number of function paths. The result contains all of the function
calls within the module and the for and from calls. If we wanted to measure
regarding the internal cohesion of the module, then we would have to filter
the result.

Caching calculated values of metrics As metrics have to be recalculated each
time the code is changed, it is desirable to make this process as fast as possible.
Fortunately, most metrics can be calculated incrementally, if we store the measured
values in the associated module or function semantic node. This way, only the
values of those metrics have to be adjusted that are affected by the change in the
code.

Number of function clauses

show number_of_funclauses for module(’exampmod’)

Figure 1: Query language example
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Function calls into the module

show function_calls_out for module(’exampmod’)

Figure 2: Query for modules

Example Erlang module

-module(exampmod).

abs(X) when X >= 0 -> X;
abs(X) -> -X.

sign(0) -> 0;
sign(X) when X > 0 -> 1;
sign(X) -> -1.

manhattan(Xs, Ys) ->
Pairs = lists:zip(Xs, Ys),

List =
[abs(X-Y) || {X, Y} <- Pairs],

lists:sum(List).

Figure 3: An example module in Erlang

Textual query language Figure 1 and Figure 2 show two metrics queries. The
former shows the number of all function clauses in the module; for the module
exampmod, whose code can be seen in Figure 3, this value is 6, as the function
abs has two clauses, sign has three and manhattan has one. The latter shows the
number of calls of external functions in the module; for exampmod, this value is
2, since calls to lists:sum and lists:zip (functions of the module lists) are included,
but the call to abs, a local function, is not.

In Section 4.1, we give an extension to this query language that enables the
user to write transformations based on the measured metric values. Batches of
such queries can be stored as scripts that automatically improve the source code
when executed.

4. Metrics driven transformations

Most of the metrics can be associated to a node in the program graph so that
the value of the metric can be calculated using only the syntax subtree below the
node. We store the current values of metrics in the associated node, which serves
two purposes when the code is transformed. Firstly, since most of the metrics are
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compositional, we can use the stored values as caches, and only recalculate the
parts that have changed, thereby making the calculation of the new values faster.
Secondly, we can compare the old and the new values of the metrics, and we can
make the necessary arrangements if the code is changed in an undesired way:

1. We can leave the transformation of the code to the user. This task is time
consuming and error prone, especially if the code base is large, difficult, or
unknown to the user. In this case, RefactorErl can help the user by displaying
the values of metrics measured on the current code, and warns the user if a
value goes beyond a specified limit.

2. The user may use the semi-automatical transformations of RefactorErl to
improve the code. With this option, the user regains control of the process of
transformation: he chooses what gets transformed and in what way. Using
RefactorErl ensures that the code is transformed in all necessary places, and
that the resulting code is syntactically valid, and semantically equivalent to
the original.

3. As the main contribution of the paper, we introduce a new approach: metrics
driven automatic code optimization. We elaborate it in the following section.

4.1. Metrics driven automatic code optimization
We introduce an extension to our query language in which the transformation en-
gine of RefactorErl can be instructed to improve the source code based on the
calculated metrics. The grammar of the original query language is shown in Fig-
ure 4.

Optimization query language Figure 5 shows the grammar of the optimiza-
tion extension language. In Figures 4 and 5, Id, Ids, ArRel, LogCon Var and Int
stand for an identifier, a list of identifiers, an arithmetic relation (e.g. <), a log-
ical connector (e.g. and), a variable and an integer, respectively. The extension
language is quite straightforward, describing which modules are to be transformed
(optimize), which transformations are to be used (using), where the transforma-
tions are to be attempted (where), and at most how many steps are to be attempted
(limit). In the where clause, the identifiers indicate a metric; variables may only
be used if the query is part of a script, and the variable is bound to a value of a
metric.

MetricQuery → Show Loc

Show → show Id

Loc → module Id | function Id

Figure 4: Slightly abridged grammar of the metrics query language
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Query → MetricQuery | OptQuery

OptQuery → Opti Trs Where Limit

Opti → optimize all | optimize Ids

Trs → using Ids

Where → where Cond

Cond → Expr ArRel Expr

| Cond LogCon Cond

Expr → Id | V ar | MetricQuery

Limit → limit Int

Figure 5: Grammar of the metrics query language with optimiza-
tion

Metrics driven transformation example The first code snippet in Figure 7
shows a function that contains too deeply nested case expressions. Figure 6 shows
the script we are going to use to instruct the engine to improve the code.

The script consists of two steps. The first step calculates the maximum level of
case nesting in module not_present (not appearing in this paper); let this value to
be 1. This value is assigned to the variable P1. The second step starts the transfor-
mation engine, which tries to decrease the number of nodes in module to_refactor
where the condition holds. Since the number_of_functions is only one, the sig-
nificant part of the condition selects those nodes where max_depth_of_cases is
larger than one. In the original code, the function f contains a case construct of
depth 3, which is then refactored using the introduce function transformation (in-
troduce_fun). The transformation takes the body of the innermost case construct,
and extracts it to a new function f0.1

As we have not reached the step limit, the condition is reevaluated: the num-
ber_of_functions has grown to 2, and the max_depth_of_cases is decreased to
2. Since this value is still over the desired value, a similar transformation step
is applied as depicted in Figure 7. This is the last transformation step: we have
reached the step limit. Incidentally, we have also eliminated all nodes where the
condition of the query would hold.

Since the transformation engine executes the script without external help, it
might transform the code in an inferior way to an expert. If the result of the script
execution does not turn out to be desirable, the user want have to revert the code
to the state before the execution of the script. It is also possible to revert only
some steps that the script took.

1The name of the function is generated. If the name of the function is not to the liking of the
user, it can be changed using another available transformation later.
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P1 = show
max_depth_of_cases

for
module not_present

optimize
module to_refactor

where
max_depth_of_cases > P1
and
number_of_functions < 10

using
introduce_fun

limit 2

Figure 6: Metric query language example code

5. Related work

Several IDEs for object oriented languages (e.g. Eclipse [7], NetBeans, IntelliJ
Idea) provide both metrics and refactorings, however, we are unaware that the two
areas are connected in any of them.

Simon, Steinbrückner and Lewerentz [5] have created a tool that visualizes
several metrics based on Java and C++ code, thereby helping the user to make
decisions about transforming his code. They show that well chosen metrics can
support the decision of the user before he confirms a refactoring.

The goal of the project Crocodile [6] is to provide concepts and tools for an ef-
fective usage of quantitative product measurement to support and facilitate design
and code reviews particularly for object oriented programs and reusable frame-
works. While Crocodile is useful as a measurement tool, it also can interactively
assist the programmer in executing transformation steps.

Tidier [8, 9] is a software tool that makes a series of fully automated code
transformations which improve the performance, quality and/or structure of the
code. Tidier uses simple semantics preserving transformations with an emphasis
on easy validability. The transformations are universally applicable, and do not
rely on metrics for guidance.

6. Conclusion and future work

In this paper, we have presented a way to improve software by applying automated
transformations based on complexity metrics. We have defined a query language
which makes the transformations accessible to the end user, and we have imple-
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The original code
f({A, B})->

case A of
send -> case B of

{Pid, Data} ->
case Pid of

{pid, P} -> P ! Data;
_ -> Pid ! B end;

_ -> null ! B end};
_ -> mod:wait() end.

↓

Code after the first step
f({A, B})->

case A of
send -> f0(B);

_ -> mod:wait()
end.

f0(B) ->
case B of
{Pid, Data} ->

case Pid of
{pid, P} -> P ! Data;

_ -> Pid ! B
end;

_ -> null ! B end.

↓

The result of the transformation
f({A, B})->

case A of
send -> f0(B);

_ -> mod:wait()
end.

f0(B) ->
case B of

{Pid, Data} -> f1(B, Data, Pid);
_ -> {null ! B}

end.

f1(B, Data, Pid) ->
case Pid of

{pid, P} -> P ! Data;
_ -> Pid ! B

end.

Figure 7: Two steps of automatic source code transformation
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mented an engine that improves the source code by executing scripts written in
the query language.

We have implemented the method described in the paper as part of RefactorErl,
an Erlang analyser and transformation tool. The back end of the tool builds the
program graph representation discussed in Section 3.

Using the information in the graph, we collect the values of the metrics and we
store them in the corresponding nodes of the graph. When the graph is changed,
these values are updated incrementally. The values are shown in the user interface,
and are also queryable. The user may define a limit for a metric or a combination
of metrics; when the code is measured to be outside this limit, the user is alerted.
Analysis of how such limits should be defined may constitute a promising new line
of research.

In addition to the calculation of the metrics values, we have implemented the
metrics driven code optimization discussed in Section 4. We have extended the pre-
vious metrics query language as seen in Figure 5 to support query based automatic
code optimization, and we have implemented the engine that runs the transforma-
tions according to the query. The engine is also capable of running scripts that
contain batches of queries. If unsatisfied with the result, the user can fully or
partially revoke these transformations.
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Abstract

The C++ Standard Template Library (STL) is an essential part of pro-
fessional C++ programs. STL is a type-safe template library that is based
on the generic programming paradigm and helps to avoid some possible dan-
gerous C++ constructs. With its usage, the efficiency, safety and quality of
the code is increased.

However, professional C++ programmers are eager for some missing STL-
related opportunities. For instance, infinite ranges are hardly supported by
C++ STL. STL does not contain iterators that use a predicate during traver-
sal. STL’s design is not good at all from the view of predicates. In this paper
we present some extensions of C++ STL that supports effective generic pro-
gramming. We show scenarios where these extensions can be used pretty
gracefully. We present the implementation of our infinite iterators.

Keywords: C++, STL, iterators

MSC: 68N15

1. Introduction

The C++ Standard Template Library (STL) was developed by generic program-
ming approach [1]. In this way containers are defined as class templates and many
algorithms can be implemented as function templates. Furthermore, algorithms are
implemented in a container-independent way, so one can use them with different
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containers [19]. C++ STL is widely-used inasmuch as it is a very handy, standard
C++ library that contains beneficial containers (like list, vector, map, etc.), a large
number of algorithms (like sort, find, count, etc.) among other utilities.

The STL was designed to be extensible [2]. We can add new containers that
can work together with the existing algorithms. On the other hand, we can extend
the set of algorithms with a new one that can work together with the existing
containers. The expression problem [23] is solved with this approach.

Iterators bridge the gap between containers and algorithms. They provide
a standard interface to the algorithms to access the elements of the containers.
Iterators are distinguished based on their capabilities and a hierarchy is formed
based on these categories [11], too. The following categories defined in the STL:

• input iterator: the elements are reachable sequentially and they are just
readable for the algorithms.

• output iterator: the elements are reachable sequentially and they are just
writeable for the algorithms.

• forward iterator: the elements are reachable sequentially and the algorithms
can both read and write them.

• bidirectional iterator: the elements are reachable sequentially, but the algo-
rithms can read them forward and backward too, and the elements are both
readable and writeable. For example: the container list provides this kind
of iterator.

• random access iterator: the elements are reachable in any order and the
algorithms can read and write the elements. For example: the container
vector provides iterators with these capabilities.

STL also includes adaptor types which transform standard elements of the
library for a different functionality. There are iterator adaptors allowing to read an
input stream or write an output stream. These iterator adaptors instead of access
an existing element of a container read or write them to a stream. Other iterator
adaptor allows to insert a new element into a container instead of access an existing
one. These iterator adaptors are mainly input or output iterators [9].

Functor objects make STL more flexible as they enable the execution of user-
defined code parts inside the library without significant overhead [10]. Basically,
functors are usually simple classes with an operator(). Inside of the library, the
operator()s are called to execute user-defined code snippets. This can called a
function via pointer to functions or an actual operator() in a class. Functors are
widely used in the STL inasmuch as they can be inlined by the compilers and they
cause no runtime overhead in contrast to function pointers. Moreover, in case of
functors extra parameters can be passed to the code snippets via constructor calls.

Functors can be used in various roles: they can define predicates when searching
or counting elements, they can define comparison for sorting elements and properly
searching, they can define operations to be executed on elements.
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We can distinguish the functors by their behaviour. The functors with no
arguments are called generators. The functors which return boolean values are
predicates. We call those functors unary or binary functor, which has exactly one
or two arguments.

The algorithms usually work on a range of input sequence. The range is defined
by a pair of iterators. The first iterator of the pair referring to the beginning of the
range and the second one referring to the end. The range is inclusive on the left and
exclusive on the right. All containers has two member functions begin and end,
which return an iterator of the first element of the container and a dummy iterator
referring to the element after the last element in a container. As the range is
exclusive on the right, the range begin() ... end() covers the whole container.
Moreover the end iterator can be used as extremal value, such as the algorithm
find returns it, when the searched element is not in the range.

The begin and the end of the range are handled specially for those iterators,
which do not belong to a container. For example the istream_iterator reads
elements from the standard input, and it reaches the end of its range when the
next read is failed. (E.g.: it reaches the end of file.) istream_iterator created
by constructor setting the source stream representing the beginning of the range,
and the other created by the default constructor will be the end of the range.

The iterators are essential part of STL as they provide the input to the al-
gorithms. Although all the containers provide different classes of iterators, and
variety of iterator adaptors are exist in STL, there are several important func-
tionality still missing. There is no support to filter the elements that the iterator
traverses, there is no possibility to iterate over an integer range, the elements can-
not be transformed by the iterator and at last but not at least there is not possible
to work with infinite ranges.

There are ongoing researches to improve the iterator facility of STL (see section
7), no one of them supports infinite ranges.

In this paper we provide an infinite iterator type, which is able to generate
an infinite sequence of elements. This feature is mainly supported by functional
languages, such as Haskell. Functional languages are able to use infinite ranges and
lazy evaluation [6]. C++ programmers are eager for these features, too [5, 7, 8,
13, 15, 16, 17]. While infinite sequence is widely used in functional programming
realm, the infinite iterators simplifies the initialization of containers, as well.

Our paper is organized as follows: we introduce infinite iterators in section 2,
and we detaile our enhancements applied on C++0x in section 3. The implemen-
tation details about detecting the arity of functors and the stoppage of generation
are discussed in section 4 and 5. In section 6 we discuss which kind of infinite
ranges are supported by our library. The related works is detailed in section 7 and
we conclude our results in section 8.
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2. Infinite iterators

The infinite_iterator, like the istream_iterator of the STL, does not be-
long to any container, but generates a sequence of elements. Any increase on
infinite_iterator generates the next element of the sequence. The generator
strategy is provided by the user as a functor object. The infinite_iterator is
an input iterator, thus the elements are only readable.

In the hereinafter example, we create an infinite_iterator which generates
Fibonacci numbers. Then we write the first 10 Fibonacci number to the standard
output.

struct Fib
{

Fib() : a(0), b(1) {}
int operator()()
{

int res = a + b;
a = b;
b = res;
return res;

}
private:

int a;
int b;

};

Fib fib;
infinite_iterator<Fib> ii(fib);

for( int i = 0; i < 10; ++i )
std::cout << *ii++;

The struct Fib is a generator functor that generates the elements of the se-
quence. The infinite_iterator has one template argument: the type of the
generator functor. The type of the generated element is deduced by the compiler
of the signature of the functor’s member function operator(). Its constructor
receives only the functor object.

3. C++0x-based approach

The code in the previous subsection works fine, but the functor has to deal with the
whole process of generating elements of the sequence. Besides calculation of the
next element, it has to take care to save the previous elements which are playing
role in computation of the following one. However, the process of saving previous
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elements is mostly independent of the generated sequence. The only operative
question is the number of the previous elements that are needed to compute the
next one.

With the features of the new standard of C++, we can provide a more so-
phisticated infinite_iterator that makes easier of writing functors. Our new
infinite_iterator is able to save the previous elements in a sequence and feed
the functor with them. That way the functor only need to take care of computing
the next element of sequence. The number of the saved previous elements de-
pends on the number of the functor’s operator() arguments. The constructor of
infinite_iterator needs the same number of initial values of the sequence. On
increase of infinite_iterator, the stored elements are passed to the functor as
arguments.

The oldest will be the first argument, and the previously calculated will be the
last one. Then the functor computes the next element and returns it.

See the code snippet below, which simplifies the example in previous subsection.

struct Fib
{

int operator()(int a, int b) const
{

return a + b;
}

};

Fib fib;
infinite_iterator<Fib> ii(fib);

for( int i = 0; i < 10; ++i )
std::cout << *ii++;

Now the struct Fib needs to take care of the computation of the next element
only. Every other is done by the infinite_iterator.

Our solution supports the lambda expressions, which are introduced by the
C++0x [4]. Lambda expression is also accepted in place of functors [21]. The code
snippet below shows the way to apply lambda expression with infinite_iterator.

auto fib = [](int a, int b){return a + b;};
infinite_iterator<decltype(fib)> ii(fib);

4. Specializing by the arity of functors

In C++0x realm the infinite_iterator is able to distinguish between the func-
tors by their arity. The arity of a functor is the number of the arguments of its
operator(). With nullary functor, the infinite_iterator does not save the pre-
vious elements. That case all the computation process is done by the functor, like
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in the example in section 2. With unary, binary, trinary, etc. functors our iterator
saves the previous one, two, three, etc. elements, and feeds the functor with these
values on computation of the next element, like the example in subsection 3.

The code skeleton below shows the way we specializing infinite_iterator by
the arity of functor. The template argument E is related to the stoppage of the
generation of infinite sequence and it is detailed in 5.

template<class T>
struct infinite_iterator_base :

std::iterator<
std::input_iterator_tag,
T>

{
/* the common functionality

is implemented here */
};

template<
class G,
class E = not_specified,
class P = decltype(&G::operator())>

struct infinite_iterator
{
};

template<class G, class E, class T>
struct infinite_iterator<

G,
E,
T (G::*)()> :
infinite_iterator_base<T>

{
/* specialization for nullary functor */

};

template<class G, class E, class T>
struct infinite_iterator<

G,
E,
T (G::*)(T) const> :

infinite_iterator_base<T>
{
/* specialization for unary functor */

};
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template<class G, class E, class T>
struct infinite_iterator<

G,
E,
T (G::*)(T, T) const> :

infinite_iterator_base<T>
{
/* specialization for binary functor */

};

/* similarly for n-ary functor */

The struct infinite_iterator_base implements the common functionality of
the different infinite_iterator specializations, hence these specializations are
inherited from the infinite_iterator_base. Different specialization belongs to
the functors with different arity from 0 to MAX_ARITY. MAX_ARITY is a preprocessor
macro and it sets the upper limit of the supported functor arity. We generate
the different specializations from a template using Boost.Preprocessor library [24].
Our solution is similar to the way that the Boost.MPL library [25] is implemented.
While the different arities of functors require different functionalities, thus the
general version of infinite_iterator is not used and its body remains blank.

5. Stoppage of generation

The infinite_iterators generate an infinite sequence. However, in real problems
a finite subsequence of elements is required. Our solution provides end iterator to
determine a finite range of an infinite sequence. The end iterator can be created
in two ways.

• By a constructor with one integer argument: The argument specifies the
length of the finite subsequence.

• By a constructor with a predicate as its argument. With this kind of end
iterator, the generation of the elements in an infinite range is stopped, when
the predicate returns false for the currently generated element. Using this
version of infinite_iterator, the type of the predicate must be specified
as the second template argument during the instantiation of either normal
or end iterator.

The example above fills two arrays of integers (t, r) with the numbers from
1 to 10. For array t the first kind of end iterator is used, while for array r, the
second one is chosen.

struct ints
{

int operator()(int a) const
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{
return a + 1;

}
};

struct pred
{

pred(int i) : max(i) {}
bool operator()(int a) const
{

return a < max;
}

private:
int max;

}

int t[10];
int r[10];

infinite_iterator<ints> tb(ints(), 0);
infinite_iterator<ints> te(10);

infinite_iterator<ints, pred> br(ints(), 0);
infinite_iterator<ints, pred> re(pred(11));

copy(tb, te, t);
copy(rb, re, r);

The infinite_iterator created by a default constructor is also an end iterator,
however, this one represents a real infinite range, thus the generation of the elements
needs to be stopped in other way.

6. Supported infinite ranges

While the programmer can apply any kind of functor object to our library, we
support a large variety of infinite ranges. The only restriction is that the gener-
ated elements must be copy constructable and assignable. (STL also requires this
concept.)

With the help of the predefined functors of STL, the most commonly used
infinite ranges can be defined without writing any user defined functors. Infinite
iterators utilized by:

• functor binder2nd<plus<int> >(plus<int>(), 1) with 0 as initial number
generates the natural numbers
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• functor binder2nd<plus<int> >(plus<int>(), 2) with 0 as initial number
generates the positive even numbers

• functor binder2nd<plus<int> >(multiplies<int>(), 2) with 1 as initial
number generates the powers of 2

• functor plus<int>() with 1 and 1 as initial numbers generates the Fibonacci
numbers

• etc.

Although the usage of the functors provided by the STL covers the most com-
monly used ranges, our library provides additional functors allowing the user to
define infinite ranges easier. Our functors are:

• inc<T> which increases an element by prefix operator++.

• dec<T> which decreases an element by prefix verb|operator–|.

• constant<N> which returns always N, thus it can be used to define infinite
range of the same elements.

While it is possible to generate any kind of infinite range which elements are
copy constructable and assignable, for effeciency reasons our solution mainly focuses
on those ranges, where the next element can be determined by the finite number
of previous elements. In the latter case the functor itself has to take care about
all the generation process. It is a common design rule in STL that the inefficient
methods are not supported, for example, there is no index operator for list, or
push_front member function is missing in vector.

7. Related work

One known extension of the STL is the View Template Library, which provides
a layer over the C++ Standard Template Library [14]. It consists of views that
are container adaptors, and smart iterators that are a kind of iterators provided a
different view onto the data that are pointed to by the iterator. Views wrap the
container to be filtered and transformed the elements on which the view operates.
These transformations and filterings are done during the execution, without taking
effect the stored data in the container. The interface provided by the views is a
container interface.

Although View Template Library provides views that filters the elements on
a range its usage is limited to the containers. We cannot filter ranges defined by
those iterators which are not belongs to the container. Thus a simple problem:
to copy the odd numbers from the standard input to the standard output is not
soluble.

The Boost Iterator Library [26] is an extension to the STL with a variety of
useful iterator types. It contains two parts. The first one is a system of concepts



84 T. Kozsik, N. Pataki, Z. Szűgyi

which extend the C++ standard iterator requirements. The second one is a frame-
work of components for building iterators based on these extended concepts and
includes several useful iterator adaptors, such as filter_iterator, which traverses
only those elements, which satisfy a given requirement; counting_iterator, which
generates a sequence of an elements; function_input_iterator, which invokes a
nullary function on dereference operation, etc. The extended iterator concepts have
been carefully designed so that old-style iterators can fit in the new concepts and
so that new-style iterators will be compatible with old-style algorithms, although
algorithms may need to be updated if they want to take full advantage of the new-
style iterator capabilities. Several components of this library have been accepted
into the C++ standard technical report.

Our solution unifies and extends the functionality of counting_iterator and
function_input_iterator as it is able to accept an arbitray arity of functors.
Besides the infinite_iterator is able to cooperate the other iterator adaptors of
the Boost Library.

Our infinite_iterators can be adapted by filter_iterator of Boost Li-
brary. It is useful, when only elements with a specific property are needed from an
infinite sequence. Separating the condition of the specific property and the general
generation method may highly simplify to define special infinite sequences. Let us
suppose someone needs the infinite sequence of odd Fibonacci numbers. As the
addition of last two odd Fibonacci numbers is not the next odd Fibonacci number,
the generator functor has to deal with the even Fibonacci numbers as well. How-
ever, as the process of checking the number is odd is moved to filter_iterator,
the generator functor can be a simple Fibonacci sequence generator as in 3.

The example below prints the first ten odd Fibonacci number to the standard
output.

typedef infinite_iterator<Fib> inf_fib;
inf_fib ib(Fib(), 0, 1);

IsOdd pred;
boost::filter_itertator<IsOdd, inf_fib> fb(pred, ib);

for( int i = 0; i < 10; ++i )
{

std::cout << *fb++;
}

8. Conclusion

C++ Standard Template Library is the most widely-used library based on the
generic programming paradigm. It consists of handy containers and general,
reusable algorithms. Iterators bridge the gap between containers and algorithms,
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so algorithms do not depend on the used container. Adaptors are also an impor-
tant part of the STL, which can change the behaviour of the STL components for
special situations.

However, there are functionalities that are missing from the library. Although
iterators play a main role in the library, the several features that are make the
programmer work easier and fail-safe are missing or limitedly supported.

It this paper we have prompted that the infinite ranges have only a very limited
support either in the STL itself or in the other third party libraries, too. We
presented a comfortable extension for the STL which supports the usage of infinite
ranges in a general way. With the support of the incoming new standard of C++
our library become an highly customizable, easy to use, library which is able to
cooperate either the STL or the iterator extensions of the other third party libraries,
too.
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Abstract

By circle skinning we have a discrete set of circles and we would like
to find two curves, which touch each of them and satisfy some conditions.
There exist methods to give a solution for this problem, but none of them
use biarcs for the construction. Meek and Walton published a very deep
analysis of biarcs in [1], and they divided them into several families.

Of course one of the basic problems is to find the mentioned curves for
two circles. In this paper several necessary conditions are given to avoid
intersections in this basic case between the skinning curve and the circles
using a concrete family of biarcs from [1]. A method is publicated in [3] with
which we can find the touching points for the skinning.

Keywords: skinning, biarcs, interpolation, circles

1. Introduction

We have several well-known methods to interpolate a set of points, it is very im-
portant in Computer Aided Geometric Design to solve this problem. Skinning is
a special case of interpolations, where we have circles instead of points and we
would like to find a pair of curves, which touch each of the circles and have certain
preferences. There exist actual researches to get a solution for skinning problem,
often in higher dimensions with spheres [7, 8, 3, 2]. The results can be very useful
by covering problems, geometric design, designing tubular structures or molecular
modeling. The mentioned methods use C1 or G1 continuous curves by the interpo-
lation. The main idea of this paper is to use biarcs for the construction, and find
the skinning curves made by joining biarcs.
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Figure 1: A skinning example

2. Localization of the touching points

Some researchers use an iterational method to find the touching points on the
circles [7], others define them exactly before the curve interpolation [3]. In this
paper the method is considered from [3]. The authors use Apollonius-circles for
the construction, they find touching points on each circles with their neighbours.
This method guarantees to find touching points which don’t fit on other disks. This
is a very powerful attribution, so we can use this method for our construction too.

3. Families of biarcs

If we join two circular arcs in G1 continuity, we get a biarc. Biarcs have a long
history, there exists a paper from 1937 [4], where biarcs was mentioned first time.
We can create so-called biarc curves by joining biarcs [5], furthermore there are
several methods to approximate a fixed curve with biarc curves [6]. This type of
curves are very useful by design, because CNC machines can only cut lines and
arcs. Meek and Walton published a very deep analysis of biarcs in [1], and they
divided them into several families.

The authors construct a biarc from enhanced G1 Hermite datas. This means
we have two points, two unit tangent vectors and a total rotation of these vectors
W, which can be greater, than 2π.

Of course one of the basic problems is to find a biarc for two circles. On the
following picture (Figure 2) we can see the defining datas with some additional
nominations supplemented with two circles. How can we determine θ to avoid
intersections between arcs and circles?

The future goal is to analyse all of the families and determine necessary condi-
tions to avoid intersections in each cases. In this paper we consider Case 1.3 (a)
from [1]. In this case rA, rB , θ,W − θ > 0 and

2π < W < 4π,
2π + 2α < W < 3π + α,

−2π +W < θ < 4π −W + 2α.
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(a) Enhanced G1 Hermite data with a
biarc

(b) The sum of the two rotation angles
must be W.

Figure 2

Figure 3

In [1] the authors mention positive and negative radii by the arcs, so we have
to follow this convention by the circles. We can suppose that both radius of the
circles are positiv, because we can determine the directions of the tangent vectors
free by skinning problems. So the circles always can be placed at the ”left side” of
the tangent vectors. It is easy to see that we can avoid intersection between circle
cA and arc aA with condition rA > RA. By similar arguments rB > RB helps us
to avoid intersection between aB and cB .
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4. The calculation

4.1. rA > RA

We know that

rA =
r · sin

(
W+θ

2 − α
)

2 sin
(
θ
2

)
sin
(
W
2

) = r ·
sin
(
W
2 − α+ θ

2

)
2 sin

(
θ
2

)
sin
(
W
2

) ,
and

0 < θ < 2π ⇒ sin
θ

2
> 0, 2π < W < 4π ⇒ sin

W

2
< 0, 0 <

θ

2
< π,

2π + 2α < W < 3π + α ⇒ π <
W

2
− α < 2π ⇒ sin

(
W

2
− α

)
< 0.

Now we should analyse the denominator to express θ from the following in-
equality:

rA > RA

r · sin
(
W+θ

2 − α
)

2 sin θ
2 sin W

2

> RA

sin
((
W
2 − α

)
+ θ

2

)
sin θ

2

<
2RA sin W

2

r

sin
(
W
2 − α

)
· cos θ2 + cos

(
W
2 − α

)
sin θ

2

sin θ
2

<
2RA sin W

2

r

sin
(
W

2
− α

)
cot

θ

2
<

2RA sin W
2

r
− cos

(
W

2
− α

)

cot
θ

2
>

2RA sin(W2 )
r − cos

(
W
2 − α

)
sin
(
W
2 − α

)
For brevity let us set

K
.=

2RA sin(W2 )
r − cos

(
W
2 − α

)
sin
(
W
2 − α

) .

We distinguish two cases according as K > 0 or K < 0.

1. If K > 0

cot
θ

2
= K ⇒ tan

θ

2
=

1
K

⇒ θ = 2 arctan
1
K
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0 < θ < 2 arctan
1
K

2. If K < 0
θ

2
= arctan

1
K

+ π ⇒ θ = 2 arctan
1
K

+ 2π

0 < θ < 2 arctan
1
K

+ 2π

4.2. rB > RB

We know from [1] that

rB = r ·
sin
(
α− θ

2

)
2 sin

(
W−θ

2

)
sin W

2

,

and

W − 2π < θ < W ⇒ W

2
− π < θ

2
<
W

2
⇒ 0 <

W

2
− θ

2
< π ⇒

⇒ sin
(
W

2
− θ

2

)
> 0.

Now our inequation is the following:

r ·
sin
(
α− θ

2

)
2 sin

(
W−θ

2

)
sin W

2

> RB

sin
(
α− θ

2

)
sin
(
W
2 −

θ
2

) < 2RB sin W
2

r

sinα cos θ2 − cosα sin θ
2

sin W
2 cos θ2 − cos W2 sin θ

2

<
2RB sin W

2

r

If we introduce notation XB
.= 2RB sin W

2
r , the inequation is

sinα cos
θ

2
− cosα sin

θ

2
< XB sin

W

2
cos

θ

2
−XB cos

W

2
sin

θ

2
.

1. If cos θ2 > 0 (⇔ 0 < θ < π)

sinα− cosα tan
θ

2
< XB sin

W

2
−XB cos

W

2
tan

θ

2

tan
θ

2

(
XB cos

W

2
− cosα

)
< XB sin

W

2
− sinα
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(i) If XB cos W2 − cosα > 0

tan
θ

2
<
XB sin W

2 − sinα
XB cos W2 − cosα

(a) If XB sin W
2 − sinα > 0, since 0 < θ

2 <
π
2

0 < θ < 2 arctan
XB sin W

2 − sinα
XB cos W2 − cosα

(b) If XB sin W
2 − sinα < 0, we have a contradiction since tan θ

2 6< 0, if
0 < θ

2 <
π
2

(ii) If XB cos W2 − cosα < 0

tan
θ

2
>
XB sin W

2 − sinα
XB cos W2 − cosα

(a) If XB sin W
2 − sinα < 0

2 arctan
XB sin W

2 − sinα
XB cos W2 − cosα

< θ < π

(b) If XB sin W
2 − sinα > 0

0 < θ < π

2. If cos θ2 < 0 (this means that π < θ < 2π)

tan
θ

2

(
XB cos

W

2
− cosα

)
> XB sin

W

2
− sinα

(i) If XB cos W2 − cosα > 0

tan
θ

2
>
XB sin W

2 − sinα
XB cos W2 − cosα

(a) If XB sin W
2 − sinα > 0, we have a contradiction.

(b) If XB sin W
2 − sinα < 0

2 arctan
XB sin W

2 − sinα
XB cos W2 − cosα

+ 2π < θ < 2π

(ii) If XB cosα− cosα < 0

tan
θ

2
<
XB sin W

2 − sinα
XB cos W2 − cosα
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(a) If XB sin W
2 − sinα < 0

π < θ < 2π

(b) If XB sin W
2 − sinα > 0

π < θ < 2 arctan
XB sin W

2 − sinα
XB cos W2 − cosα

+ 2π

If we consider these conditions together, we get usable interval(s) to create
appropriate biarc for two circles.

5. Conclusions

Now we have several conditions to avoid intersections by constructing a biarc from
a special family for two circles. Of course we did not eliminate the cases, where we
have intersections between aA and cB or aB and cA. The future goal is to extend
the calculation for analysing these cases too, and the other cases from [1]. With
these results together we can get a powerful basic to create skinning curves using
biarcs.
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Abstract

This paper shows, that the Tribonacci-coefficient polynomial Pn(x) =
T2x

n + T3x
n−1 + · · · + Tn+1x + Tn+2 has exactly one real zero if n is odd,

and Pn(x) does not vanish otherwise. This improves the result in [1], which
provides the upper bound 3 or 2 on the number of zeros of Pn(x), respectively.

Keywords: linear recurrences, zeros of the polynomials with special coeffi-
cients

MSC: 11C08, 11B39

1. Introduction

The Fibonacci-coefficient polynomials Fn(x) = F1x
n+F2x

n−1 + · · ·+Fnx+Fn+1,
n ∈ N+ were defined in [2]. The authors determined the number of real zeros of
Fn(x). Generally, but with specific initial values, for binary recurrences and for
linear recursive sequences of order k ≥ 2 the question of the number of real zeros
was investigated in [3] and [1], respectively.

As usual, the Tribonacci sequence is defined by the initial values T0 = 0, T1 = 0
and T2 = 1, and by the recurrence relation Tn = Tn−1 +Tn−2 +Tn−3 (n ≥ 3). The
Corollary 2 of Theorem 1 in [1] states that the possible number of negative zeros
of the polynomial

Pn(x) = T2x
n + T3x

n + · · ·+ Tn+1x+ Tn+2

95
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does not exceed three. More precisely, Pn(x) possesses 0 or 2 negative zeros if n is
even, and 1 or 3 negative zeros when n is odd. Obviously, there is no positive zero
of Pn(x), since all coefficients are positive.

The following theorem gives that the number of negative zeros is 0 or 1 depend-
ing on the parity of n.

Theorem 1.1. The polynomial Pn(x) has no real zero if n is even, while Pn(x)
possesses exactly one real zero, which is negative, if n is odd.

In the proof, at the beginning we partially follow the approach of [1].

2. Proof of Theorem 1.1

Proof. Let f(x) = x3 − x2 − x − 1 denote the characteristic polynomial of the
Tribonacci sequence. It is known, that f(x) has one positive real zeros and a pair
of complex conjugate zeros. Put

Qn(x) = f(x)Pn(x) = xn+3 − Tn+3x
2 − (Tn+2 + Tn+1)x− Tn+2

(see Lemma 1 in [1]). Applying the Descartes’ rule of signs, Qn(x) has one positive
real zero, which obviously belongs to f(x). (It hangs together with Pn(x) possesses
no positive real roots.)

To examine the negative roots, put qn(x) = Qn(−x). In order to use Descartes’
result again, we must distinguish two cases based on the parity of n.

First suppose that n is even. Now

qn(x) = −xn+3 − Tn+3x
2 + (Tn+2 + Tn+1)x− Tn+2,

and the number of changes of coefficients’ signs predicts 2 or 0 positive zeros of
qn(x). We are going to exclude the case of 2 zeros.

Clearly, qn(0) = −Tn+2 < 0, qn(1) = −Tn+3 + Tn+1 − 1 < 0. Further, we have

q′n(x) = −(n+ 3)xn+2 − 2Tn+3x+ (Tn+2 + Tn+1).

The values q′n(0) = Tn+2 +Tn+1 > 0, q′n(1) = −(n+ 3)− 2Tn+3 +Tn+2 +Tn+1 < 0
show that the function qn(x) strictly monotone increasing locally in 0, while strictly
monotone decreasing in 1. Since q′′n(x) = −T2(n+3)(n+2)xn+1−2Tn+3 is negative
for all non-negative x ∈ R, then qn(x) is concave on R+. Consequently, if exist,
the positive zeros of the polynomial qn(x) are in the interval (0; 1).

Therefore, to show that qn(x) does not cross the x-axes it is sufficient to prove
that intersection point of the tangent lines e : y = (Tn+2 + Tn+1)x − Tn+2 and
f : y = (−(n + 3) − 2Tn+3 + Tn+2 + Tn+1)(x − 1) − Tn+3 + Tn+1 − 1 is under
the x-axes. To reduce the calculations we simply justify that x0 > x1, where x0 is
defined by e ∩ x-axes and x1 is given by f ∩ x-axes (see Figure 1).

First, (Tn+2 + Tn+1)x− Tn+2 = 0 implies

x0 =
Tn+2

Tn+2 + Tn+1
>

Tn+2

Tn+2 + Tn+2
=

1
2
.
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Figure 1

On the other hand,

x1 =
Tn+3 − Tn+1 + 1

−(n+ 3)− 2Tn+3 + Tn+2 + Tn+1
+ 1 ≤ 1

2
(2.1)

holds if n ≥ 5. Indeed, (2.1) is equivalent to

1
2
≤ Tn+3 − Tn+1 + 1

(n+ 3) + 2Tn+3 − Tn+2 − Tn+1
,

where both the numerator and the denominator are positive. Hence n+1 ≤ Tn+2−
Tn+1 remains to show, and it can be easily deduced, for example, by induction if
n ≥ 5.

The case n = 4 can be separately investigated. Now T5 = 4, T6 = 7, and
11x− 7 = 0 provides x0 = 7/11. Moreover, T7 = 13 and −22(x− 1)− 10 = 0 gives
x1 = 6/11. Thus x1 < x0.

Assume now, that n is odd. We partially repeat the procedure of the previous
case.

The polynomial

qn(x) = xn+3 − Tn+3x
2 + (Tn+2 + Tn+1)x− Tn+2

may have 3 or 1 positive zeros (by Descartes’ rule of signs again).
Obviously, qn(0) = −Tn+2 < 0 and qn(1) = −Tn+3 + Tn+1 + 1 < 0. Now

q′n(x) = (n+ 3)xn+2 − 2Tn+3x+ (Tn+2 + Tn+1),

which together with q′n(0) = Tn+2 + Tn+1 > 0, q′n(1) = (n+ 3)− 2Tn+3 + Tn+2 +
Tn+1 < 0 implies the same monotonity behaviour in (0; 1) as before.
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Since the equation q′′n(x) = (n+ 3)(n+ 2)xn+1 − 2Tn+3 = 0 holds if and only if

xinf = n+1

√
Tn+3(
n+3

2

) ,
then qn(x) is concave on the interval (0;xinf ), and convex for x > xinf . However,
xinf > 1 if n ≥ 9, and in this case we can show that qn(x) does not intersect the
x-axes in the interval (0; 1) but there is exactly one zero if x > 1. The second
part is an immediate consequence of the existence of unique positive inflection
point xinf > 1. Concentrating on the interval (0; 1), similarly to the previous part
e : y = (Tn+2 + Tn+1)x− Tn+2 and f : y = ((n+ 3)− 2Tn+3 + Tn+2 + Tn+1)(x−
1)−Tn+3 +Tn+1 +1 intersect each other under the x-axes, because of x0 >

1
2 holds

again, and

x1 =
Tn+3 − Tn+1 − 1

(n+ 3)− 2Tn+3 + Tn+2 + Tn+1
+ 1 ≤ 1

2

follows, since −(n+ 1) ≤ Tn+2 − Tn+1.
For n = 3 or 5 or 7 we can easily check the required property. Thus the proof

is complete.
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Abstract

In this paper, we propose a task allocation algorithm on a fully connected
homogeneous multiprocessor environment using dynamic priority of modules.
This is a generalization of our earlier work in which we used static priority of
modules. Priority of modules is dependent on the computation and the com-
munication times associated with the module as well as the current allocation.
Initially the modules are allocated in a single cluster. We take out the modules
in decreasing order of priority and recalculate their priorities. In this way we
propose a clustering algorithm of complexity O(|V |2(|V |+ |E|)log(|V |+ |E|)),
and compare it with Sarkar’s algorithm.

Keywords: Clustering; Distributed Computing; Homogeneous Systems; Task
Allocation.
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1. Introduction

A homogeneous computing environment (HoCE) consists of a number of machines
generally fully connected through a communication backbone. They consist of iden-
tical machines that are connected through identical communication links. In con-
trast, a heterogeneous computing environment (HeCE) consists of different types
of machines as well as possibly different types of communication links (e.g., [8], [4],
[13]). In the remainder of this paper our discussion is based on a HoCE that is
fully connected and having an unlimited supply of machines.

A task to be executed on a HoCE may consist of a set of software modules
having interdependencies between them. The interdependencies between software
modules in a task can be represented as a task graph that is a weighted directed
acyclic graph (DAG). The vertices in this DAG represent software modules and
have a weight associated with them that represents the time of execution for the
software module. The directed edges represent data dependencies between software
modules. For example, if there is a directed edge of weight wij from module Mi

to the module Mj , then this means that Mj can start its execution only when
Mi has finished its execution and the data has arrived from Mi to Mj . The time
taken for communication is 0 if Mi and Mj are allocated on the same machine,
while it is wij in the case when Mi and Mj are allocated to different machines. We
are using the same computational model that was used in the CASC algorithm by
Kadamuddi and Tsai [7], in which a software module immediately starts sending
its data simultaneously along its outgoing edges.

When all the software modules of a task are allocated to the same machine,
then the time taken for completing the task is called sequential execution time.
When the modules are distributed among more than one machine, then the time
taken for completing the task is called parallel execution time. We use parallelism
so that the parallel execution time can be less than the sequential execution time
of a task.

The parallel execution time of a task may depend on the way in which the
software modules of the task are allocated to the machines. The task allocation
problem is to find an allocation so that the parallel execution time can be min-
imized. When the HoCE is fully connected, and having an unlimited supply of
processors (as is in our case), the task allocation problem is also called the cluster-
ing problem in which we make clusters of modules and allocate them to different
machines. The task allocation problem on a HeCE may consist of two steps. In
the first step, a clustering of modules are found aiming at minimizing the parallel
execution time of the task on a HoCE that is fully connected, and having an unlim-
ited supply of machines. In the second step, the clusters are allocated to different
machines so that the parallel execution time of the task on the given HeCE can be
minimized.

The problem of finding a clustering of software modules of a task that takes
minimum time is an NP-Complete problem (Sarkar [12], Papadimitriou [11]). So,
for solving clustering problems in time that is polynomial in size of task graph, we
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need to develop some heuristic. The solution provided by using a polynomial time
algorithm is generally suboptimal.

In our algorithm, the dynamic priority associated with a module is called the
DCCLoad (Dynamic-Computation-Communication-Load). DCCLoad is approx-
imately a measure of average difference between the module’s computation and
communication requirements according to the current allocation. Since the mod-
ules keep changing the clusters in our algorithm, we need to recalculate their pri-
orities after each allocation. Using the concept of DCCLoad, we have developed a
clustering algorithm of complexity O(|V |2(|V |+ |E|)log(|V |+ |E|)).

The remainder of this paper is organized in the following manner. Section 2
discusses some heuristics for solving the clustering problem. Section 3 explains
the concept of DCCLoad. Section 4 presents the DynamicCCLoad algorithm.
Section 5 explains this algorithm with the help of a simple example. In section 6,
some experimental results are presented. And finally in section 7, we conclude our
work.

2. Current approaches

When the two modules that are connected through a large weight edge, are allo-
cated to different machines, then this will make a large communication delay. To
avoid large communication delays, we generally put such modules together on the
same machine, thus avoiding the communication delay between them. This concept
is called edge zeroing.

Two modules Mi and Mj are called independent if there cannot be a directed
path from Mi to Mj as well as from Mj to Mi. A clustering where independent
modules are clustered together is called nonlinear clustering. A linear clustering is
the clustering in which independent modules are kept on separate clusters.

Sarkar’s algorithm [12] uses the concept of edge zeroing for clustering the mod-
ules. Edges are sorted in decreasing order of edge weights. Initially each module is
in a separate cluster. Edges are examined one-by-one in decreasing order of edge
weight. The two clusters connected by the edge are merged together if on doing
so, the parallel execution time does not increase. Sarkar’s algorithm uses the level
information to determine parallel execution time and the levels are computed for
each step. This process is repeated till all the edges are examined. The complexity
of Sarkar’s algorithm is O(|E|(|V |+ |E|)).

The dominant sequence clustering (DSC) algorithm by Yang and Gerasoulis
[14], [15] is based on finding the critical path of the task graph. The critical path
is called the dominant sequence (DS). An edge from the DS is used to merge its
adjacent nodes, if the parallel execution time is reduced. After merging, a new DS
is computed and the process is repeated again. DSC algorithm has a complexity
of O((|V |+ |E|)log(|V |)).

The clustering algorithm for synchronous communication (CASC) by Kadamud-
di and Tsai [7], is an algorithm of complexity O(|V |(|E|2 + log(|V |))). It has four
stages of Initialize, Forward-Merge, Backward-Merge, and Early-Receive. In addi-
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tion to achieving the traditional clustering objectives (reduction in parallel execu-
tion time, communication cost, etc.), the CASC algorithm reduces the performance
degradation caused by synchronizations, and avoids deadlocks during clustering.

Mishra and Tripathi [10] consider the Sarkar’s Edge Zeroing heuristic (Sarkar
[12]) for scheduling precedence constrained task graphs on parallel systems as a
priority based algorithm in which the priority is assigned to edges. In this case,
the priority can be taken as the edge weight. They view this as a task dependent
priority function that is defined for pairs of tasks. They have extended this idea
in which the priority is a cluster dependent function of pairs of clusters (of tasks).
Using this idea they propose an algorithm of complexity O(|V ||E|(|V |+ |E|)) and
demonstrate its superiority over some well known algorithms.

3. Dynamic Computation-Communication Load of a
module

3.1. Notation

We are using the notation of Mishra et al. [9] in which there are n modules Mi(1 ≤
i ≤ n) where the module Mi is in the cluster Ci(1 ≤ i ≤ n). The set of modules
are given by:

M = {Mi | 1 ≤ i ≤ n} (3.1)

The clusters Ci ⊂M(1 ≤ i ≤ n) are such that for i 6= j(1 ≤ i ≤ n, 1 ≤ j ≤ n)

Ci
⋂
Cj = ∅ (3.2)

and
n⋃
i=1

Ci = M (3.3)

The label of the cluster Ci is denoted as an integer cluster[i] (1 ≤ i ≤ n, 1 ≤
cluster[i] ≤ n). The set of vertices of the task graph are denoted as:

V = {i | 1 ≤ i ≤ n} (3.4)

The set of edges of the task graph are denoted as:

E = {(i, j) | i ∈ V, j ∈ V,∃ an edge from Mi to Mj} (3.5)

mi is the execution time of module Mi. If (i, j) ∈ E, then wij is the weight of the
directed edge from Mi to Mj . If (i, j) /∈ E, or if i = j, then wij is 0. T is the
adjacency list representation of the task graph.
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3.2. DCCLoad of a module
In our earlier work (Mishra et al. [9]), we used a static priority of modules that
we called Computation-Communication-Load (CCLoad) of a module. CCLoad of
a module was defined as follows:

CCLoadi = mi −max_ini −max_outi, (3.6)

where
max_ini = MAX({wji | 1 ≤ j ≤ n}) (3.7)

and
max_outi = MAX({wik | 1 ≤ k ≤ n}) (3.8)

Now we are generalizing this concept so that we can also include the current
allocation into the priority of modules. Since the allocation keeps changing in our
algorithm, the priority will be dynamic. We will call it the Dynamic-Computation-
Communication-Load (DCCLoad) of a module.

DCCLoad of a module is defined as follows:

DCCLoadi = (c_ini + c_outi)mi − sum_ini − sum_outi, (3.9)

where
c_ini =

∑
cluster[j]6=cluster[i],1≤j≤n

1 (3.10)

c_outi =
∑

cluster[i]6=cluster[k],1≤k≤n

1 (3.11)

sum_ini =
∑

cluster[j] 6=cluster[i],1≤j≤n

wji (3.12)

and
sum_outi =

∑
cluster[i] 6=cluster[k],1≤k≤n

wik (3.13)

For calculating DCCLoadi of a module Mi, we first multiply its execution
time (mi) with the number of those incoming edges from, and outgoing edges to,
(c_ini+c_outi) that are allocated on different clusters fromMi. Then we subtract
the result by the sum of weight of incoming edges that are allocated on different
clusters (sum_ini) subtracted by the sum of weight of outgoing edges that are
allocated on different clusters (sum_outi).

3.3. An example of DCCLoad
In Figure 1 (taken from Mishra et al. [9]), DCCLoad of modules are calculated.
As an example, for module M2, we have:

m2 = 4 (3.14)
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Figure 1: An example task graph for showing the calculation
of DCCLoad for the allocation {M1,M3,M7}{M2,M6}{M4,M5}.

(DCCLoadi)1≤i≤7 = (-1, -3, 0, 0, -3, 0, 0)

The number of incoming edges that are from different clusters are:

c_in2 = 1 (3.15)

The number of outgoing edges that are to different clusters are:

c_out2 = 2 (3.16)

The sum of weight of incoming edges that are from different clusters are:

sum_in2 = w13 = 4 (3.17)

The sum of weight of outgoing edges that are to different clusters are:

sum_out2 = w24 + w25 = 11 (3.18)

Therefore DCCLoad2 is given by:

DCCLoad2 = (c_in2 + c_out2)m2 − sum_in2 − sum_out2 = 12− 4− 11 = −3
(3.19)

4. The DynamicCCLoad algorithm

4.1. Evaluate-DCCLoad
Evaluate-DCCLoad(T, cluster)
01 for i← 1 to |V |
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02 do c_in[i]← 0
03 c_out[i]← 0
04 sum_in[i]← 0
05 sum_out[i]← 0
06 for i← 1 to |V |
07 do load[i].index← i
08 for each (i, j) ∈ E
09 do if cluster[i] 6= cluster[j]
10 then f ← 1
11 else f ← 0
12 c_in[j]← c_in[j] + f
13 c_out[i]← c_out[i] + f
14 sum_in[j]← sum_in[j] + fwij
15 sum_out[i]← sum_out[i] + fwij
16 for i← 1 to |V |
17 do load[i].value← (c_in[i] + c_out[i])mi − sum_in[i]− sum_out[i]
18 return load

Given a task graph T , the algorithm Evaluate-DCCLoad calculates the DCC
Load for each module in the array load. Using the notation of Mishra et al. [9],
for (1 ≤ j ≤ |V |), if the DCCLoad of module Mj is lj , and if it is stored in load[i],
then we have:

load[i].value = lj (4.1)

and
load[i].index = j (4.2)

In lines 01 to 05, the count (c_in[i]) and the sum of weights of incoming edges
from different clusters (sum_in[i]), and the count (c_out[i]) and the sum of weight
of outgoing edges to different clusters (sum_out[i]) are initialized to 0. In lines 06
to 15, we consider each edge (i, j) ∈ E, and update the values of c_out[i], c_in[j],
sum_out[i] and sum_in[j] accordingly. Finally, in lines 16 to 17, we store the
DCCLoad of module Mi in load[i] for (1 ≤ i ≤ |V |). Line 18 returns the load
array.

Lines 01 to 05, and lines 16 to 17 each have complexity O(|V |). Lines 06 to 15
have complexity O(|E|). Line 18 has complexity O(1). Therefore, the algorithm
Evaluate-DCCLoad has complexity O(|V |+ |E|).

4.2. Evaluate-Time

Given a task graph T , and a clustering cluster, the algorithm Evaluate-Time
taken from Mishra et al. [9] calculates the parallel execution time of the clustering.
It is basically based on the event queue model. There are two type of events:
computation completion event, and communication completion event. Events are
denoted as 3-tuples (i, j, t). As an example, a computation completion event of
module Mi, that completes its computation at time ti will be denoted as (i, i, ti),
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and a communication completion event of a communication from Mi to Mj , that
is finished at time tij will be denoted as (i, j, tij).

There are a total of (|V |+ |E|) events out of which |V | events are computation
completion events corresponding to each module, and |E| events are communication
completion events corresponding to each edge. Mishra et al. [9] has shown the
complexity of the Evaluate-Time algorithm as O((|V |+ |E|)log(|V |+ |E|)).

4.3. DynamicCCLoad Algorithm

DynamicCCLoad(T )
01 for j ← 1 to |V |
02 do cluster[j]← 1
03 load← Evaluate-DCCLoad(T, cluster)
04 Sort-Load(load)
05 cmax ← 2
06 for j ← 1 to |V |
07 do i← 1
08 tmin ← Evaluate-Time(T, cluster)
09 for k ← 2 to cmax
10 do cluster[load[j].index]← k
11 time← Evaluate-Time(T, cluster)
12 if time < tmin
13 then tmin ← time
14 i← k
15 cluster[load[j].index]← i
16 load← Evaluate-DCCLoad(T, cluster)
17 load[j].value← −∞
18 Sort-Load(load)
19 if i = cmax
20 then cmax ← cmax + 1
21 return (tmin, cluster)

We are using the heuristic of Mishra et al. [9]:
(1) We can keep the computational intensive tasks on separate clusters because

they mainly involve computation. Such tasks will heavily load the cluster. If we
keep these tasks separated, we can evenly balance the computational load.

(2) We can keep the communication intensive tasks on same cluster because
they mainly involve communication. If we keep these tasks on the same cluster, we
may reduce the communication delays through edge-zeroing.

The DCCLoad-Clustering algorithm implements the above heuristic using
the concept of DCCLoad. Initially all modules are kept in the same cluster (cluster
1, also called the initial cluster, lines 01 to 02). Given a task graph T , and an initial
allocation of modules cluster, line 03 evaluates the DCCLoad of modules. Line
04 sorts the load array in decreasing order. cmax (line 05) will be the number of
possible clusters that can result, if one module is removed from the initial cluster,
and put on a different cluster (including the initial cluster).
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We take the modules out from the initial cluster one-by-one (line 06) in de-
creasing order of CCLoad (line 10). At the same time we also calculate the parallel
execution time, when it is put on all possible different clusters (lines 09 to 11). tmin
is used to record the minimum parallel execution time, and i is used to record the
corresponding cluster (lines 12 to 14). Finally we put the module on the cluster
that gives the minimum parallel execution time (line 15). In line 16 we also set
its DCCLoad value to −∞ to make it invalid so that in future we can not use it.
Line 17 re-evaluates the DCCLoad of modules after the change in allocation and
line 18 again sorts them in decreasing order.

It may also happen that the parallel execution time was minimum when the
module was put alone on a new cluster. In this case we will have to increment cmax
by 1 (lines 19 to 20). Line 21 finally returns the parallel execution time, and the
corresponding clustering.

Lines 01 to 02 have complexity O(|V |). Line 03 has complexity O(|V | + |E|).
Line 04 has complexity O(|V |2) if bubble sort is used [6]. Lines 05 and 21 each have
complexity O(1). Lines 08 and 11 have complexity O((|V | + |E|)log(|V | + |E|)).
For each iteration of the for loop in line 06, Evaluate-Time (lines 08 and 11)
is called a maximum of |V | times (cmax can have a maximum value of |V |, when
all modules are on separate clusters). The complexity of the for loop of lines 06
to 20 is dominated by Evaluate-Time that is called a maximum of |V |2 times.
Therefore, the for loop has complexity O(|V |2(|V |+ |E|)log(|V |+ |E|)) that is also
the complexity of DynamicCCLoad algorithm.

5. A simple example

Consider the task graph in Figure 2 (taken from Mishra et al. [9]). Initially all mod-
ules will be clustered in the initial cluster as (cluster[i])1≤i≤4 = (1, 1, 1, 1). Parallel
execution time will be 8. For the initial allocation we have (DCCLoadi)1≤i≤4 =
(0, 0, 0, 0). Then the modules are sorted according toDCCLoad in decreasing order
as (M1, M2, M3, M4).

The first module to be taken out is M1 which forms the clustering (2, 1, 1, 1).
Parallel execution time for this clustering is 9. This is not less than 8. Therefore,
module M1 is kept back in the initial cluster as (1, 1, 1, 1). For this allocation we
re-calculate DCCLoad. After setting the value of DCCLoad1 to −∞ so that it
can not be used in future, we get (DCCLoadi)1≤i≤4 = (−∞, 0, 0, 0). The modules
sorted in decreasing order are: (M2, M3, M4, M1).

We next take out the module M2 to form the clustering (1, 2, 1, 1). Parallel
execution time for this clustering is 8. This is also not less than 8. Therefore,
module M2 is kept back in the initial cluster as (1, 1, 1, 1). For this allocation we
re-calculate DCCLoad. After setting the value of DCCLoad2 to −∞ so that it
can not be used in future, we get (DCCLoadi)1≤i≤4 = (−∞,−∞, 0, 0). Modules
sorted in decreasing order are: (M3, M4, M2, M1).

We next take out the module M3 to form the clustering (1, 1, 2, 1). Parallel
execution time for this clustering is 7. This is less than 8. Therefore, module M3
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Figure 2: An example task graph for explaining the
DynamicCCLoad algorithm. For the initial allocation we have
(DCCLoadi)1≤i≤4 = (0, 0, 0, 0). The DynamicCCLoad algorithm
clusters the modules as (M1, M2)(M3)(M4), giving a parallel exe-

cution time of 6.

is kept in a separate cluster as (1, 1, 2, 1). For this allocation we re-calculate
DCCLoad. After setting the value of DCCLoad3 to −∞ so that it can not be
used in future, we get (DCCLoadi)1≤i≤4 = (−∞,−∞,−∞, 0). Modules sorted in
decreasing order are: (M4, M3, M2, M1).

The last module to be taken out is M4. Now there are two possible clustering:
(1, 1, 2, 2) and (1, 1, 2, 3). Parallel execution time for the clustering (1, 1, 2,
2) is 7. Parallel execution time for the clustering (1, 1, 2, 3) is 6. The minimum
parallel execution time comes out to be 6 for the clustering (1, 1, 2, 3) that is
also less than 7. Therefore, module M4 is also kept in a separate cluster as (1,
1, 2, 3). For this allocation we re-calculate DCCLoad. After setting the value of
DCCLoad4 to −∞ so that it can not be used in future, we get (DCCLoadi)1≤i≤4 =
(−∞,−∞,−∞,−∞). Modules sorted in decreasing order are: (M4, M3, M2, M1).
At this point the DynamicCCLoad algorithm stops.

The final clustering of modules is (M1, M2)(M3)(M4) in which the modulesM1

and M2 are clustered together, while the modules M3 and M4 are kept on separate
clusters. This clustering gives a parallel execution time of 6.

6. Experimental results

The DynamicCCLoad algorithm is compared with the Sarkar’s edge zeroing al-
gorithm [12]. This algorithm has a complexity of O(|E|(|V |+ |E|)).

Algorithms are tested on benchmark task graphs of Tatjana and Gabriel [3],
[2]. We have tested for 120 task graphs having number of nodes: 50, 100, 200, and
300 respectively. Each task graph has a label as tn_i_j.td. Here n is the number
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Figure 3: Parallel execution times for tn_i_j.td.

of nodes. i is a parameter depending on the edge density. Its possible values are:
20, 40, 50, 60, and 80. For each combination of n and i, there are 6 task graphs
that are indexed by j. j ranges from 1 to 6. Therefore, for each n, there are 30
task graphs.

For the values of n having 50, 100, 200, and 300, Figure 3 shows the comparison
between the Sarkar’s edge zeroing algorithm and the DynamicCCLoad algorithm
for the parallel execution time. It is evident from the figures that the average
improvement of DynamicCCLoad algorithm over Sarkar’s edge zeroing algorithm
ranges from 5.81% for 100-node task graphs to 8.30% for 300-node task graphs.

7. Conclusion

We developed the idea ofDCCLoad of a module by including the current allocation
of modules. This resulted in a dynamically changing priority of modules. We used
a heuristic based on it to develop the DynamicCCLoad algorithm of complexity
O(|V |2(|V | + |E|)log(|V | + |E|)). We also demonstrated its superiority over the
Sarkar’s edge zeroing algorithm in terms of parallel execution time. For the future
work there are two possibilities: experiment with different dynamic priorities, and
experiment with different ways in which we can take the modules out from the
initial cluster.

Acknowledgements. The authors are thankful to the anonymous referees for
valuable comments and suggestions in revising the manuscript to the present form.
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Abstract
We look at arithmetic progressions on elliptic curves known as Huff curves.

By an arithmetic progression on an elliptic curve, we mean that either the x or
y-coordinates of a sequence of rational points on the curve form an arithmetic
progression. Previous work has found arithmetic progressions on Weierstrass
curves, quartic curves, Edwards curves, and genus 2 curves. We find an
infinite number of Huff curves with an arithmetic progression of length 9.
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1. Introduction

Recently, several researchers have looked at arithmetic progressions on elliptic
curves. Bremner [3], Campbell [4], Garcia-Selfa and Tornero [8] used elliptic curves
given by a Weierstrass equation, while Campbell [4], MacLeod [12], and Ulas [15]
have looked at quartic models. Moody [13] has studied the problem on Edwards
curves. Alvarado [1] and Ulas [16] have extended similar results to genus 2 hyper-
elliptic curves. The historical motivation for this problem is discussed in [8].

Besides Weierstrass equations, quartic curves, and Edwards curves [6], there
are other models for elliptic curves. These include Jacobi intersections [5], Hessian
curves [10], and Huff curves [9], for example. Originally introduced in 1948, Huff
curves have recently been shown to have applications in cryptography [11], [7]. An
elliptic curve in Huff’s model can be written as

Ha,b : x(ay2 − 1) = y(bx2 − 1).

In this work, we look at arithmetic progressions on Huff curves. By this we mean
a sequence of rational points (x1, y1), . . . , (xn, yn) on Ha,b with the xi forming an
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Source Model Longest progression Longest progression
for infinite family

[3],[4] Weierstrass curves 8 8
This work Huff curves 9 9

[13] Edwards curves 9 9
[2],[12],[15] quartic curves 14 12
[1],[16] genus 2 quintics 12 12
[16] genus 2 sextics 18 16

Table 1: Longest arithmetic progressions on curves

arithmetic progression. The main result of this paper is to show several infinite
families of Huff curves with arithmetic progressions of length 9. In comparison,
Table 1 gives the length of the longest arithmetic progression for the previously
mentioned models. Note in general the length increases as we have more variables
in the defining curve equation we can specify.

2. Arithmetic progressions

Huff curves are elliptic curves that can be written as x(ay2−1) = y(bx2−1), when
ab(a − b) 6= 0. Clearly we have symmetry in x and y if we switch a and b, so we
only look for arithmetic progressions on the x-coordinates. Note trivially that the
point (0, 0) is always on the curve. Notice also that an arithmetic progression of
x-coordinates of the form {−kd,−(k − 1)d, . . . ,−d, 0, d, 2d, . . . , (k − 1)d, kd} can
always be rescaled so that d = 1. This is seen as follows. If the point (jd, y) is
on the curve Ha,b, then the point (j, y/d) is on the curve Had2,bd2 . As a conse-
quence, we will focus on finding Huff curves which have x-coordinates in the set
{±1,±2,±3,±4}.

We will repeatedly need the following calculation. If we require a rational point
(x, y) onHa,b with x = n, then we must have that any2−(bn2−1)y−n = 0. In order
for y ∈ Q, the discriminant (bn2 − 1)2 + 4an2 must be a rational square. Applying
this to x = 1, we need (b− 1)2 + 4a = j2 for some rational j. The same equation is
true for x = −1. Similarly, if we require rational points with x-coordinate ±2 and
±3, then we must have (4b − 1)2 + 16a = k2, and (9b − 1)2 + 36a = l2 for some
rational k and l. Solving for a in our first equation, we have

a =
1
4
(
j2 − (b− 1)2

)
. (2.1)

Eliminating a from the other two equations, we are left with the system

12b2 + 4j2 − k2 = 3, (2.2)

72b2 + 9j2 − l2 = 8. (2.3)
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We now parameterize the solutions in terms of b and a parameter m. Some
easy algebra verifies that j = 3b2 − 1 and k = 6b2 − 1 is a solution to (2.2). Let
j = 3b2 − 1 + t and k = 6b2 − 1 +mt. Substituting these values into (2.2) yields

t
(
(m2 − 4)t+ 12mb2 − 24b2 − 2m+ 8

)
= 0.

Solving for t, we see t = −2 (6b2−1)m−4(3b2−1)
m2−4 , and thus

j =
(3b2 − 1)m2 − 2(6b2 − 1)m+ 4(3b2 − 1)

m2 − 4
, (2.4)

k =
−(6b2 − 1)m2 + 8(3b2 − 1)m− 4(6b2 − 1)

m2 − 4
.

We substitute this expression for j into (2.3) and seek a rational solution for l.
Some more algebra shows that this is equivalent to

81(m−2)4b4 +18(m−2)2(m2 +22m+4)b2 +m4−36m3 +172m2−144m+16 (2.5)

being a rational square. Considering this as a polynomial in b, we first check to
see what values of m will lead to the constant term being square. The equation
E : v2 = m4 − 36m3 + 172m2 − 144m + 16 clearly has the rational point (0, 4),
and so determines an elliptic curve. Using SAGE [14], the curve E is found to
have rank 0, and torsion points (0,±4), (1,±3), (2,±12), (4,±12), and (−2,±36).
We exclude m = ±2, as this leads to division by 0 in the expressions for j and k.
When m = 1 or m = 4, then (2.5) is not the square of a polynomial in b. When
m = 0, then (2.5) is 16(9b2 + 1)2.

So letting m = 0, we have j = −(3b2 − 1), and a = 1
4b(3b− 2)(3b− 1)(b+ 1) by

(2.1). With this expression for a, then the curve Ha,b has an arithmetic progression
of length 7, namely x = −3,−2,−1, 0, 1, 2, 3. In order for x = ±4 to be a rational
point, we are led to the discriminant 144b4 + 144b2 + 1 needing to be a square. As
the curve

E1 : v2 = 144b4 + 144b2 + 1

clearly has rational point (0, 1), then E1 is an elliptic curve. By SAGE, this curve
has rank 2 with generators ( 1

12 ,
17
12 ), and ( 1

8 ,
29
16 ). Each rational point on E1 leads

to a value for b so that the Huff curve Ha,b has an arithmetic progression of length
9. We thus have our first infinite family of Huff curves with a progression of length
9.

3. More families

Returning to (2.5),we consider it as a polynomial in m,

(9b2 + 1)2m4 − 36(18b4 − 9b2 + 1)m3 + 4(486b4 − 360b2 + 43)m2

− 144(18b4 − 9b2 + 1)m+ 16(9b2 + 1)2.
(3.1)
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If we compare this to(
(9b2 + 1)m2 − 18(18b4 − 9b2 + 1)

9b2 + 1
m+ 4(9b2 + 1)

)2

,

the difference is
160m2(324b4 − 45b2 + 1)

(9b2 + 1)2
.

If the difference is equal to 0, then (3.1) is a square. The case m = 0 was already
examined. The other zeroes are when b = ± 1

3 ,±
1
6 . Letting b = − 1

3 , then

a = − (3m− 4)(m− 3)(m+ 1)(m+ 4)
9(m2 − 4)2

.

The condition that x = ±4 is the coordinate of a rational point is equivalent to the
corresponding discriminant being a rational square; i.e. we seek a rational point
on the curve

E2 : v2 = 169m4 − 128m3 − 264m2 − 512m+ 2704.

The choice of b = 1
3 leads to the same curve. Similarly, when b = ± 1

6 , we are led
to the curve

E3 : v2 = 46m4 − 440m3 + 1968m2 − 1760m+ 736.

Both E2 and E3 are elliptic curves with rank 2 and 1 respectively. These ranks were
computed by SAGE. Each rational point on one of the curves leads to a Huff curve
with a rational point having x-coordinate ±4, and thus a progression of length 9.

By experimentation, we found a few other infinite families. Using the same
parameterization as above, let b = ± 1

4 or ± 1
8 . Then it can be checked that x = ±4

is the x-coordinate of a rational point on the Huff curve Ha,b with a determined
by (2.1) and (2.4). However, we are no longer guaranteed that x = ±3 is on the
Huff curve. Requiring x = ±3, we arrive at the following curves

E4 : v2 = 625m4 − 4680m3 + 22936m2 − 18720m+ 10000, (b = ±1/4)

E5 : v2 = 5329m4 − 127368m3 + 614296m2 − 509472m+ 85624. (b = ±1/8)

These elliptic curves have ranks 1 and 2, leading to two more infinite families of
Huff curves with progressions of length 9.

Finally, letting b = ± 1
2 the parameterized Huff curve is Ha,±1/2, with

a = − (3m− 2)(m− 6)
64(m− 2)2

. (3.2)

The condition that there is a rational point with x = ±3 leads to a quadratic,
instead of a quartic as in previous cases:

v2 = 169m2 − 604m+ 676. (3.3)
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A parametric solution to (3.3) is given by

m = −4(13s+ 151)
s2 − 169

,

v = −2(13s2 + 302s+ 2197)
s2 − 169

.

Substituting this expression for m into (3.2), and requiring x = ±4 we have the
curve

E6 : r2 = 46s4 + 2288s3 + 42124s2 + 335712s+ 1017846,

which has rank 1. Each rational point of E6 gives a rational s, which in turn
determines a rational m and a. The curve Ha,±1/2 will have rational points with
x-coordinates ±3 and ±4.

4. Conclusion

In the previous section, we produced six infinite families of Huff curves having the
property that each has rational points with x-coordinate x = −4,−3, −2,−1, 0, 1,
2, 3, 4. This produces an arithmetic progression of length 9. We have performed
computer searches to see if we can find any rational points on these curves leading
to x = ±5 being the x-coordinate of a rational point on Ha,b. So far these searches
have failed to turn up such a point. It is therefore an open problem to find a
Huff curve with an arithmetic progression of length 10 (or longer). It would also
be interesting to investigate arithmetic progressions on the remaining models of
elliptic curves.

Acknowledgments. We would like to thank the anonymous referee for noticing
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Abstract

For suitable integers α, γ and f : [3,+∞[ ∩ Z → [0,+∞[ ∩ Z, denote
by w(Rα,γ,f , k, r) the least positive integer such that for any r-colouring of
[1, w(Rα,γ,f , k, r)] ∩ Z, there exists a monochromatic finite sequence
(x1, . . . , xk) satisfying xi = (αai + 2)xi−1 + (γai − 1)xi−2 with some inte-
gers ai = 0 or ai ≥ f(i) (i = 3, . . . , k). In the present paper we describe the
possible values of α and γ. We also derive an upper bound on w(Rα,γ,f , k, 2)
in these cases. This gives a generalization of a result of B. M. Landman [3].

Keywords: van der Waerden type numbers, linear recurrence sequences

MSC: 05D10, 11B37

1. Introduction

Most results of Ramsey theory in the area of number theory deal with monochro-
matic sequences or monochromatic solutions of diophantine equations, systems of
diophantine equations (for an extensive survey see [4]). In this paper we study the
monochromatic properties of some second order linear recurrence sequences.

Let S be a non-empty set of sequences of positive integers. On a finite sequence
of S of length k we mean the first k elements of a sequence from S. For integers
k ≥ 3 and r ≥ 2, let w(S, k, r) be the least positive integer if it exists, such that

∗Research was supported in part by Grant 75566 from the Hungarian Scientific Research Fund.
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for any r-colouring of [1, w(S, k, r)] ∩ Z, there is a monochromatic finite sequence
of S of length k. We call w(S, k, r) a van der Waerden type number.

Throughout this paper by arithmetic progression we mean a strictly increasing
arithmetic progression of positive integers and denote their set by A. By the
classical theorem of B. L. van der Waerden [6], w(A, k, r) exists for arbitrary k, r.
We will use the standard notation w(k, r) for w(A, k, r).

Obviously, if S1 and S2 are non-empty sets of sequences of positive integers such
that S1 ⊆ S2 and w(S1, k, r) exists, then w(S2, k, r) also exists and w(S2, k, r) ≤
w(S1, k, r). In particular, if S is a non-empty set of sequences of positive integers
with A ⊆ S, then w(S, k, r) exists and w(S, k, r) ≤ w(k, r).

In our paper we consider the case of linear recurrence sequences. Remark that
we can describe A by a linear recurrence, namely A is the set of sequences (xi)∞i=1

satisfying xi = 2xi−1 − xi−2 (i = 3, 4, . . .) with some positive integers x1 < x2.
Denote by F the set of strictly increasing sequences of positive integers satis-

fying the Fibonacci recurrence, that is

F = {(xi)∞i=1 |x1 < x2 positive integers, xi = xi−1 + xi−2 (i = 3, 4, . . . )}.

H. Harborth, S. Maasberg [2] and H. Ardal, D. S. Gunderson, V. Jungić, B. M.
Landman, K. Williamson [1] proved that w(F , k, r) exists if and only if k = 3. The
previous authors also examined other binary recurrences. A forthcoming paper of
G. Nyul and B. Rauf [5] studies the existence of van der Waerden type numbers
for higher order linear recurrence sequences.

B. M. Landman [3] (see also [4], Section 3.6) considered van der Waerden type
numbers for three families of some second order linear recurrence sequences, con-
taining A as a subset. He gave an upper bound for them when r = 2. In [4] at
the end of Section 3.6, the authors suggest to investigate some similar families of
sequences.

The purpose of our paper is to study this question, but not only for some new
separate families. We describe all possible families of sequences and give an upper
bound for the corresponding van der Waerden type numbers. As we shall see, the
three families and the results of B. M. Landman [3] are special cases of our general
ones.

2. Description of our families of sequences

Let α, γ ∈ Z, not both zero, and let f : [3,+∞[ ∩ Z → [0,+∞[ ∩ Z. Denote by
Rα,γ,f the family of sequences (xi)∞i=1 with positive integers x1 < x2, satisfying
xi = (αai + 2)xi−1 + (γai − 1)xi−2 for some integers ai where ai = 0 or ai ≥ f(i)
(i = 3, 4, . . .).

Later on we will also consider the special case when f is identically 0. For this
we introduce the notation Rα,γ = Rα,γ,f .

According to the slightly different parametrization given by B. M. Landman [3]
for familiesR0,1,f ,R1,0,f ,R1,−1,f , more generally we could set α, β, γ, δ, A ∈ Z, α, γ
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not both zero, such that αA+β = 2, γA+δ = −1 and g : [3,+∞[∩Z→ [A,+∞[∩Z
and consider the collection of sequences (xi)∞i=1 with positive integers x1 < x2,
satisfying the recurrence xi = (αbi + β)xi−1 + (γbi + δ)xi−2 where bi = A or
bi ≥ g(i) is an integer (i = 3, 4, . . .). Note that in fact this is not a more general
family of sequences, because it can be reparametrized toRα,γ,f with g(i) = f(i)+A
and bi = ai +A.

The van der Waerden type number w(Rα,γ,f , k, r) is meaningful only if each
element of Rα,γ,f consists of positive integers. But in this case w(Rα,γ,f , k, r)
always exists, sinceA ⊆ Rα,γ,f (with the choice ai = 0), moreover w(Rα,γ,f , k, r) ≤
w(k, r). Thus it is natural to prove the following statement.

Proposition 2.1. Each element of Rα,γ,f contains only positive integers if and
only if α ≥ 0, γ > 0 or α > 0, γ ≤ 0, α ≥ |γ|.

Proof.
I. First let α ≥ 0 and γ > 0. In this case we prove by induction that each

element (xi)∞i=1 of Rα,γ,f is strictly increasing. It follows from the assumption that
x1 < x2. If we suppose xi−1 < xi, then xi+1−xi = (αai+1+1)xi+(γai+1−1)xi−1 ≥
xi − xi−1 > 0 since αai+1 + 1 ≥ 1 and γai+1 − 1 ≥ −1.

In the case α > 0, γ ≤ 0, α ≥ |γ| we can prove it similarly by induc-
tion and using xi+1 − xi = (αai+1 + 1)xi + (γai+1 − 1)xi−1 ≥ (|γ| ai+1 + 1)
(xi − xi−1) > 0.

II. In the remaining cases we can find a sequence from Rα,γ,f which contains
a negative number.

In the case α < 0, let x1 = 1. Then we have x3 = (αx2 + γ)a3 + 2x2 − 1. If x2

is sufficiently large, then αx2 + γ < 0, hence by choosing a sufficiently large a3, x3

is negative.
If α = 0 and γ < 0, we get similarly with the choice x1 = 1 that

x3 = γa3 + 2x2 − 1, which is negative for sufficiently large a3.
Finally consider α > 0, γ < 0, α < |γ|, and let x2 = x1 + 1. Now

x3 = ((α+γ)x1+α)a3+x1+2 holds. If x1 is sufficiently large, then (α+γ)x1+α < 0,
which gives x3 < 0 with a sufficiently large a3.

3. Upper bounds on van der Waerden type numbers

Now we prove our main result, an upper bound on van der Waerden type numbers
for Rα,γ,f when the number of colours is 2.

Theorem 3.1.
Case 1: If α ≥ 0 and γ > 0, then

w(Rα,γ,f , k, 2) ≤ w(Rα,γ,f , 3, 2)
k∏
j=4

[(α+ γ)f(j) + (α+ γ)j − α− γ + 1].
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Case 2: If α > 0, γ ≤ 0 and α ≥ |γ|, then

w(Rα,γ,f , k, 2) ≤ w(Rα,γ,f , 3, 2)
k∏
j=4

(αf(j) + αj − α+ 2).

Proof. For brevity let us use the notation Cα,γ,f (k) for the right-hand sides of the
inequalities. We prove the theorem by induction on k. It is obvious for k = 3.
Suppose that it is true for k − 1 (k ≥ 4) and prove it for k.

Let χ be an arbitrary 2-colouring of [1, Cα,γ,f (k)]∩Z with colours red and blue.
By the induction hypothesis there exists a (k − 1)-term monochromatic finite se-
quence (x1, . . . , xk−1) ofRα,γ,f under the colouring χ with elements x1, . . . , xk−1 ≤
Cα,γ,f (k − 1), say it is red.

Let yi = [α(f(k) + i − 1) + 2]xk−1 + [γ(f(k) + i − 1) − 1]xk−2 (i = 1, . . . , k).
In both cases y1 < . . . < yk, yi > xk−1 and yi ≤ [α(f(k) + k − 1) + 2]xk−1+
[γ(f(k) + k − 1) − 1]xk−2 using the assumptions on α and γ. In Case 1 the
numbers in brackets are positive and xk−2, xk−1 ≤ Cα,γ,f (k − 1), hence yi ≤
[(α + γ)f(k) + (α + γ)k − α − γ + 1]Cα,γ,f (k − 1) = Cα,γ,f (k). In Case 2 the
first number in brackets is positive and the other is negative, which gives similarly
yi ≤ [α(f(k) + k − 1) + 2]xk−1 ≤ [α(f(k) + k − 1) + 2]Cα,γ,f (k − 1) = Cα,γ,f (k).
This means yi ∈ [1, Cα,γ,f (k)] ∩ Z.

Now we have two possibilities: If some yi (i = 1, . . . , k) is red, then
(x1, . . . , xk−1, yi) is a red finite sequence from Rα,γ,f of length k having elements
in the desired interval. On the other hand, if each yi (i = 1, . . . , k) is blue, then
(y1, . . . , yk) is a k-term monochromatic finite arithmetic progression, hence a finite
sequence of Rα,γ,f with elements in [1, Cα,γ,f (k)] ∩ Z.

If f is identically 0, we have the following immediate consequence:

Corollary 3.2.
Case 1: If α ≥ 0 and γ > 0, then

w(Rα,γ , k, 2) ≤ w(Rα,γ , 3, 2)
(α+ γ + 1)(2α+ 2γ + 1)

k∏
j=1

[(α+ γ)j − α− γ + 1].

Case 2: If α > 0, γ ≤ 0 and α ≥ |γ|, then

w(Rα,γ , k, 2) ≤ w(Rα,γ , 3, 2)
2(α+ 2)(2α+ 2)

k∏
j=1

(αj − α+ 2).

4. Examples

Finally we show some examples with the most interesting possible values of α and
γ. Examples 1 and 2 belong to Case 1, while Examples 3, 4 and 5 belong to Case 2.



Upper bounds on van der Waerden type numbers . . . 121

We notice that Examples 1, 3 and 4 were the original families treated by B. M.
Landman [3].

In each example we describe the recurrence, but omit the conditions of
f : [3,+∞[ ∩ Z → [0,+∞[ ∩ Z, and ai = 0 or ai ≥ f(i), since they are common
in all cases. Additionally we give a possible reparametrization of the recurrence,
together with the corresponding value of A with our earlier notation. (In Examples
2 and 5, n!! denotes the semifactorial of a natural number n.)

Example 1: α = 0, γ = 1.
Recurrence: xi = 2xi−1 + (ai − 1)xi−2

Reparametrization: xi = 2xi−1 + bixi−2 (A = −1)
Upper bounds:

w(R0,1,f , k, 2) ≤ w(R0,1,f , 3, 2)
k∏
j=4

(f(j) + j)

w(R0,1, k, 2) ≤ 7
6
k!, since w(R0,1, 3, 2) = 7.

Example 2: α = 1, γ = 1.
Recurrence: xi = (ai + 2)xi−1 + (ai − 1)xi−2

Reparametrization: xi = (bi + 3)xi−1 + bixi−2 (A = −1)
Upper bounds:

w(R1,1,f , k, 2) ≤ w(R1,1,f , 3, 2)
k∏
j=4

(2f(j) + 2j − 1)

w(R1,1, k, 2) ≤ 3
5

(2k − 1)!!, since w(R1,1, 3, 2) = 9.

Example 3: α = 1, γ = 0.
Recurrence: xi = (ai + 2)xi−1 − xi−2

Reparametrization: xi = bixi−1 − xi−2 (A = 2)
Upper bounds:

w(R1,0,f , k, 2) ≤ w(R1,0,f , 3, 2)
k∏
j=4

(f(j) + j + 1)

w(R1,0, k, 2) ≤ 1
3

(k + 1)!, since w(R1,0, 3, 2) = 8.

Example 4: α = 1, γ = −1.
Recurrence: xi = (ai + 2)xi−1 + (−ai − 1)xi−2

Reparametrization: xi = bixi−1 + (−bi + 1)xi−2 (A = 2)
Upper bounds:

w(R1,−1,f , k, 2) ≤ w(R1,−1,f , 3, 2)
k∏
j=4

(f(j) + j + 1)
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w(R1,−1, k, 2) ≤ 7
24

(k + 1)!, since w(R1,−1, 3, 2) = 7.

Example 5: α = 2, γ = −1.
Recurrence: xi = (2ai + 2)xi−1 + (−ai − 1)xi−2

Reparametrization: xi = 2bixi−1 − bixi−2 (A = 1)
Upper bounds:

w(R2,−1,f , k, 2) ≤ w(R2,−1,f , 3, 2)
k∏
j=4

(2f(j) + 2j)

w(R2,−1, k, 2) ≤ 3
16

(2k)!!, since w(R2,−1, 3, 2) = 9.
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1. Introduction

The Bernoulli NumbersBn, n = 0, 1, 2, . . . are defined by the exponential generating
function:

B(z) =
z

ez − 1
=
∞∑
n=0

Bn
zn

n!
. (1.1)

As (1.1) implies that B(−z) = z +B(z), we have:

(−1)nBn = Bn + δn1 , for n ≥ 0. (1.2)

where the notation δni is the classical Kronecker symbol which equals 1 if n = i

and 0 otherwise. Consequently, we have B1 = −1
2
, and Bn = 0, when n is odd and

n ≥ 3. Let us define εn :=
1 + (−1)n

2
, thus:

εnBn = Bn +
1
2
δn1 , for n ≥ 0. (1.3)

123
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Note that the Bernoulli polynomials can be defined by the following function:

B(x, z) :=
zexz

ez − 1
=
∞∑
n=0

Bn(x)
zn

n!
.

Thus, we have:

∞∑
n=0

Bn(x)
zn

n!
=

( ∞∑
n=0

Bn
zn

n!

)( ∞∑
n=0

xn
zn

n!

)
.

Therefore the polynomial Bn(x) satisfies the following equality:

Bn(x) =
n∑
k=0

(
n

k

)
xn−kBk. (1.4)

We note also that:

B(x+ 1, z)−B(x, z) =
∞∑
n=0

(Bn(x+ 1)−Bn(x))
zn

n!
= zexz.

Consequently, we deduce the following property of Bn(x) :

Bn(x+ 1)−Bn(x) = nxn−1, for n ≥ 1. (1.5)

In this paper, we are extending the well-known following formulae involving Ber-
noulli Numbers. First, the Seidel formula (1877) [4], re-discovered later by Kaneko
[3] (1995):

n∑
k=0

(
n+ 1
k

)
(n+ k + 1)Bn+k = 0, for n ≥ 1.

And secondly, the Chen-Sun formula [1] (2009):

n+3∑
k=0

(
n+ 3
k

)
(n+ k + 3) (n+ k + 2)(n+ k + 1)Bn+k = 0. (1.6)

Our main result consists on the following:

Theorem 1.1. For given odd natural q and for natural number n ≥ 0, we have the
equality:

n+q∑
k=0

(
n+ q

k

)
(n+ k + q) (n+ k + q − 1) · · · (n+ k + 1)Bn+k = 0. (1.7)

Obviously, this result gives the Seidel-Kaneko formula when q = 1, and the
Chen-Sun formula when q = 3.
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2. Proof of the main result

For a given odd number q and for an integer number n ≥ 0, we consider the
polynomials:

H(x) =
1
2
xn+q(x− 1)n+q,

and

K(x) =
n+q∑
k=0

εn+k

(n+ q + k + 1)

(
n+ q

k

)
(Bn+q+k+1(x)−Bn+q+k+1) . (2.1)

By the binomial theorem, we deduce:

H(x) =
1
2

n+q∑
k=0

(−1)n+k+1

(
n+ q

k

)
xn+q+k, (2.2)

and

H(x+ 1) =
1
2

n+q∑
k=0

(
n+ q

k

)
xn+q+k. (2.3)

Thus, by using the equality property (1.5), we verify that:

K(x+ 1)−K(x) = H(x+ 1)−H(x) =
n+q∑
k=0

εn+k

(
n+ q

k

)
xn+q+k. (2.4)

Moreover
K(0) = H(0) = 0. (2.5)

Then, (2.2), (2.3), (2.4) and (2.5) imply:

K(x) = H(x).

If [xn]P (x) denotes the coefficient of xn in the polynomial P (x), we can write:

[xq+1]K(x) = [xq+1]H(x). (2.6)

So, from (1.4)

[xq+1]K(x) =
n∑
k=0

εn+kBn+k

(n+ q + k + 1)

(
n+ q

k

)(
n+ q + k + 1

q + 1

)
, (2.7)

and from (2.2), we have:

[xq+1]H(x) =
1
2

(
n+ q

1− n

)
. (2.8)
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From (1.3), we know that:

εn+kBn+k = Bn+k +
1
2
δk1−n. (2.9)

Since

n+q∑
k=0

δk1−n
2(n+ q + k + 1)

(
n+ q

k

)(
n+ q + k + 1

q + 1

)
=

1
2(q + 1)

(
n+ q

1− n

)(
q + 1
q

)
=

1
2

(
n+ q

1− n

)
. (2.10)

We deduce, from ( 2.7), (2.9) and (2.10) that:

[xq+1]K(x) =
n+q∑
k=0

Bn+k

(n+ q + k + 1)

(
n+ q

k

)(
n+ q + k + 1

q + 1

)
+

1
2

(
n+ q

1− n

)
. (2.11)

It follows from (2.6), (2.8) and (2.11) that:

n+q∑
k=0

1
(n+ q + k + 1)

(
n+ q

k

)(
n+ q + k + 1

q + 1

)
Bn+k = 0, (2.12)

and by multiplying by (q + 1)!, we obtain, finally, the aimed result which is:

n+q∑
k=0

(
n+ q

k

)
(n+ k + q)(n+ k + q − 1) . . . (n+ k + 1)Bn+k = 0.

This ends our proof.
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Abstract

In the fifth grade math of elementary school demonstration, representa-
tion, and experimentation are of central importance. This can be achieved
by dynamic softwares such as GeoGebra. The pivotal point, however, the
timetable and the time to learn the management of the interface, navigation
tools. It takes a couple of lessons, but in any case, the future prospects for
this loss of time. It is also important to keep in mind that, in the case of top-
ics that should be included in the GeoGebra, and on a what kind of manner.
Here are the results I will describe in the light of the past 3 years.

Keywords: GeoGebra, ICT in mathematics

1. Introduction

According to George Pólya [1], the mathematics teacher must be a good trader: it
is necessary to sale the goods to the customer at all costs, means the mathematics
to the students. This can be possible by means of motivation. The motivation is
one of the basic principles of didactic methods.

The mathematics teaching sustained intellectual work, which is essential to
ensure the proper motivation. It is possible to select tasks that carry the possibility
of interest and awareness. It is not only necessary to develop the motivation, but to
strengthen it with a planned, determinate development. The inclusion of dynamic
software in the learning-teaching process, with the assistance of interactive table,
where possible, apparently can create a great motivational base in those schools,
where it is difficult to motivate students.

129
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There are several dynamic softwares, but in our experience, the following points
have to be taken into account at he choice by the educational institution: if the
program is available free of charge, i.e. to be accessible to all, Hungarian-language,
cross-platform, easy-to-use, detailed help and available sample programs. GeoGe-
bra [2] is a good and popular choice from this viewpoint.

The Hungarian-language Wiki GeoGebra [5] can provide worksheets, and the
palette is very broad: those who want to deal with this issue, can found various
samples and lots of information.

According to international research [3, 4] GeoGebra (more precisely dynamic
geometry softwares) are the only tool, by which a higher (over 10%) improvement
can be achieved in geometry teaching. Similar results of the relevance of GeoGebra
have been found in Luxembourg [6, 7], Germany [8] and France [9] in a relatively
longer term (3–5 year) within the framework of research projects, specifically at
primary school age group.

The aim of this paper is to show the results of a longitudinal research in a
rural school, where the effectiveness of GeoGebra-based teaching is proved with
the help of a control group with classical teaching methods, even in the case of
highly disadvantaged students.

2. The research environment

The school of our experimental research is a rural primary school in a small vil-
lage, 80% of the students are from minorities, and 68% of the students are highly
disadvantaged. The computer is already essentially a kind of motivation for these
students. The tests are controlled design, the lineage system were performed: the
class 5/a has been involved in the GeoGebra teaching-learning process, while the
class 5/b (control group) has been performed by classical tools. At the beginning
of the school years on the basis of input from the measurements in parallel classes
students’ performance were nearly the same in all cases. The following table shows
the results:

year 2008/2009 year 2009/2010 year 2010/2011
5/a 2,61 2,77 2,57
5/b 2,57 2,63 2,72

Table 1: Input measurements in math before application of Geo-
Gebra

In the following section some thematic fields of mathematics will be discussed
were GeoGebra has been proved to be extremely useful.

3. Topics and results

The following subjects have been successfully improved by GeoGebra:
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1. introduction to geometry

2. geometric drawings

3. geometric transformations

4. Completion of four basic operations by integers or fractions.

3.1. Introduction to geometry

After the introduction of basic geometric concepts and grouping (shapes, flat, space,
etc.), the teaching-learning process has been performed in the computer room in
class 5/a. At this point 2-3 hours should have been devoted to the learning of
the basics of GeoGebra software (the basic structure, interface options, points,
lines, polygons, add sections, add zoom options, etc.). The first relevant GeoGebra
program was as follows: a straight line through two points to add, and then locate
the “end” of the line. GeoGebra worksheet is rather large, so the kids will eventually
get bored of searching the straight “ends” of the line. In our experience this short
practice is a very successful tool to introduce the concept of the infinity.

In the 5. grade textbook the concept of congruence is appeared in relation to
the same shape and size of shapes. Many of the problems in the case of my students
arise as to determine if the given shapes are congruent or not. In the GeoGebra
it is possible to create an interactive, dynamic worksheet, which helps the children
in the recognition process: the combination of congruent shapes (Figure 1).

Figure 1: Determine the congruent shapes

Here the children turn on the automatic solution-control (which is a check box,
and are good solutions for linking), can filter out the “disturbing” factors: the
color of the shape, pattern, location, and to concentrate on the essentials, in all
cases (shape and size, which is a mathematical point of view, it is important to
us). The introduction of the congruence used to have playful worksheets for the
students: find the difference. The two images appear to be congruent but a number
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of differences are to search in the images. They are very engaging, and the ability
to acquire the use of GeoGebra, and these problems arise a doubt, the feeling of
need to prove something (in this case, the solution can be achieved by activating a
check box).

Is also worth to mention a game called geometric line-game. In addition, the
development of reflection operations is a good tool at the beginning to learn the
selection of the appropriate toolbars in GeoGebra (c.f. Fig 2.).

Figure 2: Geometric line-game

After the final test, which has been performed in the traditional way, the Geo-
Gebra group has been provided a result of approximately 9% better than the control
group compared to the average, which is certainly significant.

year 2008/2009 year 2009/2010 year 2010/2011
5/a (GeoGebra group) 3,11 2,92 3,12
5/b (control group) 2,86 2,71 2,92

Table 2: Introduction to the geometry: results

3.2. Geometric constructions
As we have mentioned in the introduction we should not merely rely on the Ge-
oGebra. For children of this age manual activity, motion culture, the development
of the aesthetic work are also of great importance to pursue acquisition of com-
petence. Thus, in any case, we start the topic of geometric constructions in the
traditional way (ruler and compass). What can one do to provide something ex-
tra at this topic by GeoGebra? Once the children confidently carried out various
constructions, they can sit to the front of GeoGebra and experience the benefits of
the dynamic software compared to paper drawing:

1. faster triangle inequality test
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2. faster, more accurate construction

3. resolving a particular construction task, thanks to the dynamics a number of
similar construction task can be resolved quickly by changing the positions
or values of the data

4. the discussion of the solutions is easier (various surveys, what types of solu-
tions are expected).

The latter happens to be the pivotal point: If they have a single solution in
paper, they normally think the problem is solved. An important consideration is
to find all of the solutions.

The related lesson types were as follows:

Figure 3: Constructing three sides of a triangle (generally solved)

• Construct a triangle with sides a = 2 cm, b = 4 cm, c = 5 cm. Generalize this
construction for arbitrary lengths (Figure 3)!

• Construct a rectangle, if a = 2 cm, b = 5 cm. Generalize this construction for
arbitrary lengths (Figure 4)!

Since two different device types (ruler – compass and GeoGebra) have been
used by the children in the GeoGebra group (5/a), steps like capture data, the
systematic, precise, thoughtful work, or the elementary steps of constructions have
been clarified in a more confident way (e.g did not work with arcs, but with circles).
Finally they have learned how to control their work. Results of the control tests
of constructions are shown in the following Table, providing better contribution by
the GeoGebra group by an average of 6%:

year 2008/2009 year 2009/2010 year 2010/2011
5/a (GeoGebra group) 3,62 3,43 3,55
5/b (control group) 3,42 3,27 3,35

Table 3: Geometric constructions: results
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Figure 4: Constructing the rectangle

3.3. Geometric transformations

At this stage students have already been quite confident in use of GeoGebra in class
5/a. In the class 5 we are reflecting objects through a line. This could be introduced
in several ways: symmetric images from nature, the use of various interesting games
and so on. GeoGebra can be next to go on this way: It is possible to insert pictures
to your worksheet. Now the children themselves are able to discover the properties
of reflection through the axis (Figure 5).

Figure 5: The study of reflecting through axis in a picture

The following task is a stand-alone work: they have to search the internet for
a picture with symmetrical shape, find the position of the axis of symmetry and
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confirm the possibility of turning on the trail on GeoGebra. This type of task
highly developed the ability of determining whether there is an axis of symmetry
in a picture or shape. In the case of such problems, the results have improved
significantly by the application of GeoGebra. For example, 60% of the group was
able to reflect a concave heptagon axially in a paper drawing, such that the axis
actually intersected the shape, which has been a remarkable performance. In this
case the difference between the two groups was so obvious, that the GeoGebra
group received more challenging problems in the test. Even this way their results
were better, which can be seen in the following table:

year 2008/2009 year 2009/2010 year 2010/2011
5/a (GeoGebra group) 3,18 3,07 3,13
(with harder problems)
5/b (control group) 3,11 2,98 3,04

Table 4: Geometric constructions: results

3.4. Basic operations with integers and fractions

There are several models, which teachers can use in the context of the topic men-
tioned above: colored-rod stocks, discs, thermometer-model, debt-asset model and
so on. Now one can try a new tool, the dynamic software (see Fig. 6).

Figure 6: Representation of multiplication

Over the past 3 years our experience gained has shown that the results of the
GeoGebra group, have been shifted towards the positive direction, although the
extent of the movement was not as large as in the case of the geometry. In our
opinion GeoGebra should still be included among the standard equipments in the
field as well.

All the GeoGebra worksheets and problems can be found in the Hungarian Wiki
GeoGebra page [5], and one can find additional additional worksheets which can
be used with similar results.
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Abstract
The so-called ’Pólya’s method’ is now the canonical way of teaching math-

ematical problem solving. We would like to show that the method is not
restricted to Math classes. Here we apply the method to solving tsumego
problems that are isolated, small scale tactical problems in the ancient board
game of Go. This new and unusual topic enables the students to get a wider
view of the strategies of problem solving and the cognitive and psychological
processes involved can also be easily demonstrated.

Keywords: problem solving, game of Go (Wei-Chi, Baduk), Pólya’s method
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1. Introduction

Go is an ancient two player Asian board game with very simple rules (see Appendix
A). Despite the simplicity of its description, the game is indeed very complex and
requires deep strategical and tactical knowledge. In fact, Go is the last stronghold
of natural intelligence, the last board game for which artificial intelligence up to now
has failed to produce computer programs that can beat professional players. Go
seems to require problem solving techniques that go beyond the brute force search
algorithms and learning the game is rumored to be equivalent to take an advanced
mathematical course. For younger people playing Go can improve thinking skills
and rather surprisingly it can ease their social interactions[8] as well. Similar to
chess problems there are Go problems called tsumegos (Japanese term adapted
to English, see Appendix B). These can be introduced without explaining the

∗This project was supported by the Abacus Talent Workshop (NTP-OKA-XII-005).
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full complexity of the game, so problem solving can be studied in a very focused
setting, unlike mathematical problems that sometimes require some background
knowledge.

Pólya’s method described in his seminal book titled How To Solve It? [6] is
now the standard way of teaching mathematical problem solving. The method
distinguishes four principles or rather four consecutive stages of problem solving.

Understanding the problem Restating the problem in easier terms with more
explanation, drawing diagrams, formulating questions, etc.

Devising a plan Assembling a list of possible steps leading to a solution, guessing
and checking, considering special cases, eliminating possibilities, etc.

Carrying out the plan Executing the steps - patience and care is needed.

Looking back, evaluation The real in gain in the learning process comes from
reflecting on what has been done and how.

These steps are general enough to apply them in a context different from math-
ematical problem solving. Here we describe a 90 minutes long session where stu-
dents solve Go problems using Pólya’s method, demonstrating how each step of
the method applies to tsumego solving. This description is detailed therefore by
using this description, similar sessions can be carried out in different environments.
It is important to note that deep knowledge of the game is not required for the
instructor.

2. The Tsumego Session

At the Eszterházy Károly College, as part of a one semester programme for fostering
talented students from secondary schools we had afternoon sessions on different
topics in Mathematics and Computer Science. The pupils were from different
schools chosen by teachers from their schools, 12 pupils in total. This particular
session on problem solving consisted of two parts (each of them 90 minutes long).
The first part contained classical mathematical problems with explicit reflection on
the heuristics. Due to the length of the session, the afternoon was very demanding
for the students. Therefore it was very important for the second part to be more
entertaining, even slightly unusual, thus we chose the game of Go.

It is necessary that real Go boards and Go stones are used during the ses-
sion. Proper Go equipment has distinct aesthetics: simple regularity of the grid
contrasted by the organic shape of woodgrains, the balance of interwoven black
and white shapes. Invariably people start fiddling with Go stones when those are
within reach of their hands, even when they are not in the situation of playing a
game. Therefore the tactile experience of placing a stone on the board is very much
part of the game. It is motivating and it gives a natural pace for working on the
problems (as opposed to quickly clicking through all the empty intersections by a
mouse while staring at a computer screen).
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2.1. Understanding the Problem

Without further ado the students are presented with the following tsumego prob-
lem. (To save space in later diagrams we omit the coordinates.)

Problem 2.1. Black moves and lives in the corner while white is trying to kill the
black groups.

Clearly, this immediate presentation of the problem will have a mild shock on
the students as they are most probably used to long introductions before the first
exercise. Obviously, this works better if the students have no prior knowledge of
the game, or they just played a few games some time before, but they are not
regular players. If Go players are present they should be asked not to spoil the
effect by telling the solution quickly.

Using the confusion of the students the instructor can point to the first stage of
problem solving: understanding the problem. In the ideal situation they have no
prior knowledge of the game, so they have to face a situation in which understanding
of the problem is completely missing. This never happens in mathematical problem
solving, since by the time they first hear about Pólya’s method, they already have
solved many problems so their background knowledge is indeed quite deep.

Trying not cause any frustration by overexploiting the initial confusion the
instructor claims that understanding the problem is just a matter of a few minutes
long explanation. Unlike chess, where each piece has its own style of moving, go
stones are all the same and once placed they do not move. Fortunately, for life
and death problems, only a few concepts needs to be introduced. A group is a set
of connected stones (along the lines, but not diagonally). A liberty of a group is
an empty neighbouring intersection. A group is dead if there are no liberties left,
so the number of liberties measures how far is the group from being captured (see
details in the appendices). For unconditional life a group needs to have at least
two liberties, two empty intersections that are not connected along the lines, i.e.
they are separated by the group itself (see Fig. 1 and the Appendices).

The goal is now clear: to make moves in a way that the black group eventually
survives by building a living shape or captures some white stones.

This introduction of the basic concepts of the game is a good opportunity for
introducing the game in a wider philosophical[2] and historical context[3, 4]. In fact,
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Figure 1: Minimal living shapes. Each black group has only two
remaining liberties, but these liberties are well separated, therefore
these groups cannot be captured, they are alive unconditionally.
For the very first time the concept of unconditional life may not be
fully comprehended by the students. This is not a problem, but it
is still useful to show this collection as some students may recognize

one of these shapes later on the board. [7]
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Figure 2: Problems for the concept of capturing and escaping by
increasing the number of liberties. The key first step is indicated in
both problems. For both problems the solution consists of only one

move.

Figure 3: Problems for the idea of having two eyes. In the left
problem the white group is not able to form two eyes (comb shape)
after Black 1. In the problem on the right Black occupies the only
point that can separate two empty points within the tentatively

surrounded area.

we do nothing special here, only reversing the usual order of first the introduction
and giving background information, then proceeding to exercises. Turning the
order around is done for giving more motivation for the pupils and for illustrating
more vividly the first step of Pólya’s method.

2.2. Devising a plan

By now it is clear for the students that the plan will consist of a sequence of
alternating moves. But there are many possible choices and a complete beginner
may not have a sense of direction to follow in solving the problem. Another advice
from the problem solving method is that one should look for similar but simpler
problems. For this purpose the students are given five simpler problems.

The first two problems in this set are just checking the understanding of the
basic concepts: capturing and escaping by increasing the number of liberties of a
group (Fig. 2). Interestingly, students found these problems too easy and difficult
to believe that the answer is just placing a stone. Therefore it is important to
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Figure 4: A capturing race. The solution of the problem requires
to put white into atari at the right place. Trying to capture the

other white group will end up loosing the inner black group.

reiterate that now we look at simplest possible problems.
The next two are about the idea of unconditional life by making two eyes (Fig.

3), referring back to the collection of unconditionally alive shapes (Fig. 1).
The last one in the set is a capturing race (Fig. 4) where for solving the problem

one has to count the liberties of each group involved. In all problems black is to
make a move. This is just a convenient simplification.

2.3. Carrying out the plan

The best setup is when students work in pairs on one board, one of them taking
black, the other one white. After an unsuccessful attempt they may swap sides.
If they cannot come up with the correct solution the instructor can take black (or
white) and play it out with the students.

During the session approximately one third of the student came up with the
correct solution without any further instruction. Others needed feedback on eval-
uating actual positions, whether the goal is reached or not.

At this point it is good to show the tree structure encoding the variants of
a tsumego problem as an illustration. The nodes of the tree are positions, the
connecting edges are moves. The variations can be studied after trying to solve the
problem on an excellent tsumego site [5]. This also enables a quick explanation of
the basic idea of the classical artificial intelligence algorithms: searching the game
tree [1]. Humans do exactly the same type step-by-step calculation in an unfamiliar
situation just as the participating students did during the session.

2.4. Reviewing the Solution

It is a good attitude in Go if someone is looking for a better move even if a good
move has already been found. After successfully solving the tsumego it is important
to evaluate the solution. Is there a better variant? Did we overlook something?
Maybe white can intervene at a certain move? In case the solution is solid, still
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there is room for improvement. One can consider whether another shape would be
better for further development.

It is also important to mention that the applied search method is not the highest
form of problem solving. There is empirical evidence that Go masters come up with
the solutions without any discursive thinking, their eyes fixate on the vital point
under 300 milliseconds [9]. Some sort high-level pattern matching is done by the
master players. For beginners the eye movement traces the steps of the search
method. By solving tsumegos the brain develops this ability to recognize patterns
on a subconscious level. This level of problem solving is in contrast with the
discursive search method mentioned before. Instead of thinking about the problem
and creating a plan, we can simply “see” the solution. Clearly the level of intuitive
knowledge, the immediate certainty can be reached only by frequent practice of the
step-by-step problem solving. Most players agree that this is the best way to get
stronger in Go, solving many tsumegos frequently.

Similar is true for mathematical problem solving. By working on many different
problems one develops the expertise or rather the intuition to see parts of the
solution even in more complex problems. This is a well known phenomenon for
working mathematicians. When working on a problem the solution comes suddenly,
and not when someone tries hard, but when turns away from the problem. This is
the next level beyond problem solving as an exercise towards creative research.

Clearly, the success of the session depends on whether the students were capable
of solving the tsumegos or not, but since there are really elementary problems, this
can be guarateed. The instructor should emphasize that a lot has been learnt and
with the acquired knowledge the students can start to play the game themselves.
They should be provided with further technical information (good starting point is
[7]). At the same time the students should be warned that this is just the beginning
and becoming a good Go player or a good at Math is not a quick process.

3. Conclusion

We described the application of Pólya’s method to a different domain of problem
solving in a form of a special session for selected students. This enables students
to get a new perspective on the steps of problem solving (see comparison on Fig.
5). Solving Go problems is a great opportunity to talk about the psychology of
problem solving, to introduce algorithmic concepts of artificial intelligence and the
inner workings of our pattern matching minds. This fresh view of Pólya’s method
helps students to apply the steps more efficiently in mathematical context as well.
We recommend the tsumego session as a complement to traditional problem solving
classes.



144 A. Egri-Nagy

Mathematical Problem
Solving

Studying Tsumegos

Previous
knowledge

Requires extensive back-
ground knowledge and
experience in Mathematics.

Nothing needed. Only a few
simple concepts are to be ex-
plained.

Benefit Good preparation for tests
and exams.

Fun, gives new perspective on
problem solving, but no im-
mediate payoff.

Reflection Doing Mathematics is very
complex activity, an interplay
of numerous cognitive struc-
tures.

Due to its simplicity it is easy
to point out the cognitive pro-
cesses involved.

Figure 5: Comparing a mathematical and a tsumego solving ses-
sion.

A. The Rules of the Game of Go

Go is played by two persons (Black and White) on a board with a 19 × 19 grid.
The game starts with an empty board. A move is placing a stone on an empty
intersection point. Black makes the first, then moves alternate. The goal is to
surround more territory. Friendly stones on neighbouring points (connected by
gridlines but not diagonally) form groups. By counting a group’s empty neighbour-
ing points we get the liberty of the group. If this number becomes zero, i.e. all
neighbouring points are occupied by enemy stones, then the group is captured or
dead and it is taken off the board. If the liberty count is exactly 1, then we say
that the group is in atari. It is not compulsory to make a move but suicide moves
and those that restore a previous board position are forbidden. The game ends
when both player pass. Then the surrounded territory is counted (the number of
prisoners subtracted). The winner is the player with more territory.

B. Tsumego

Tsumegos are local battles where in a few moves one side suffers decisive loss
or gains overwhelming advantage. The most common type of these all or nothing
situations are life and death problems in which the goal is to save or kill a group, i.e.
increasing liberties/forming two eye groups or filling up liberties of enemy groups.
Solving tsumegos is basically finding a few key moves. Go players aim to solve
tsumegos within seconds.

Acknowledgments. I am grateful to Ilona Téglási for paving the way to the
tsumego session by delivering an excellent problem solving class in the first part,
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Abstract

Teaching related to the measurement of IT services, tools and controlling
infrastructure has become a common activity in universities and colleges that
offer education in IT. To solve these types of IT tasks, software applications
are needed that are able to monitor systems, networks or other software.
Presented in this paper is an overview of the educational status of teaching
monitoring software to students, and also the need to teach monitoring soft-
ware combined with an expected set of general characteristics. Finally, this
paper highlights the advantages of a virtual environment for teaching various
‘monitoring software’applications to students.

Keywords: IT Service Management, Monitoring software, Virtual environ-
ment
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1. Introduction

The definition of ‘monitor’ in the Oxford Dictionary [1] is, “make continuous ob-
servation of, or record or test the operation of”. Many activities can be monitored:
the state of a system, whether a process has finished, or whether a state or an event
is occurred.

According to Kees Jan Koster [2] “there are three basic categories of monitor-
ing; technical monitoring, functional monitoring and business process monitoring”.
Business process monitoring answers the questions of whether the business is per-
forming well. The IT systems supporting that business are only a part of the
solution to that question. The aim of functional monitoring is to assess the per-
formance and availability of a use-case or a set of use-cases related to a system.
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Functional monitoring is usually performed by employing software agents to exe-
cute scripted operations on a system. Technical monitoring concerns itself with the
health of individual pieces of equipment or software, and most monitoring tools are
designed to perform these functions.

IT related monitoring can be separated into ‘technical’ and ‘functional’. Every
multifunctional operating system contains tools for observing hardware and soft-
ware continuously and for logging the operation of the system. For example, a
CPU’s loading and list of current processes can be queried and log files can contain
the important events of a system. When computers form a network, operators ob-
serve the performance of computers remotely and they monitor the network tools
and traffic. Besides general IT, overseeing special areas such as databases, trans-
actional processes are also features of monitoring software. The Monitortools.com
website [3] presenting monitoring software gives the following categories:

• PC Monitoring,

• Application Monitoring,

• Performance Monitoring,

• Cloud Monitoring,

• Protocol Analyzing and Packet Capturing,

• Database Monitoring,

• Security Monitoring,

• Service Level Monitoring,

• Environmental Monitoring,

• SNMP Monitoring,

• Event Log Monitoring,

• VoIP Monitoring,

• Network and System Monitoring,

• Web Monitoring, Network

• Traffic Monitoring.

Besides monitoring technical tools and their operations, enterprises often moni-
tor the activities of employees (the portion of effective working hours, which website
access and so on). These applications can also be used for parental control at home.

Business process supervision can also be achieved by analyzing data retrieved
from technical and functional monitoring and is helped by information technology
through analyzing software.
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2. Monitoring Software

Technical monitoring software can be categorized many ways. The categorization
is made according to the subject requirements, the number of monitored devices,
cost, and technology.

User activity, the general operations of computing, network, system, special
software or hardware is also related to the subject of monitoring. A differentiation
can be made whether Windows, Linux-like systems or both are monitored and
the platform where the monitoring software operates is also important. Only the
most serious monitoring systems are able to get information from other operating
systems (for example from Advanced Interactive eXecutive - IBM AIX). Many
vendors make monitoring software with basic functionality for Small and Medium
sized Enterprises (SME). These ones generally are only able to monitor limited
devices.

There are two different technologies to implement monitoring tools: agent-based
and agent-less. It is an older but most robust solution if an agent is deployed in each
monitored device. This case the agent collects information and sends them to the
server on the grounds of commands from the server. There are different agents for
different tasks, hence, “the agent-based approaches can gather more management
data and more depth of information because of the agent instrumentation that is
sitting on the system” [12]. Agent-less technology appeared because of difficulties
with the maintenance of agents, “As the monitoring solution is updated, the agents
will need to be updated from time to time. . . . If you have a large number of
systems, some of them might not be available when it’s time to upgrade and then
they’re running outdated versions.” [13]. Agent-less technology is however very
rare. Rather, the deployment and maintenance of agents run automatically after
network discovery or an in-built agent is used (for example in the Windows systems
Windows Management Instrumentation - WMI).

The background knowledge which is necessary to manage monitoring software
is also important when choosing the most suitable software. The in-built moni-
toring tool in Windows systems is the WMI. The Simple Network Management
Protocol (SNMP) is used for managing networks or Linux-like systems. One group
of software enables setting systems by use of protocols and standards, whilst the
other group of software offers previously defined settings for the operators. The
second group hides the protocols and standards commonly used.

The background knowledge which is necessary to manage monitoring software
is also important when choosing the most suitable software. The in-built moni-
toring tool in Windows systems is the WMI. The Simple Network Management
Protocol (SNMP) is used for managing networks or Linux-like systems. One group
of software enables setting systems by use of protocols and standards, whilst the
other group of software offers previously defined settings for the operators. The
second group hides the protocols and standards commonly used.

Table 1 summarizes the features of technical monitoring software.
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Aspects Features
Subject of monitoring user activity,

general operation of computers,
network,
database,
. . .

Number of monitored devices for home usage,
for small and medium businesses,
for enterprises

Cost of software freeware,
full trial version,
proprietary

Used technology agent-based,
agent-less,
hidden agent

Background knowledge protocols and standards,
software management

Table 1: Features of technical monitoring software

3. Educational Importance of Monitoring

The necessity of monitoring computers, networks and other IT tools is an historical
issue. The activity of monitoring is comprised in all important methodologies.
Hence, it is essential that newly graduated employee in IT service field knows the
theoretical and practical base of monitoring.

Teaching the theory and practice of monitoring can come under the subject at
technical and economic IT department of universities. (See chapter 5 for details.)

With enriching monitoring knowledge of students on one part their problem
solving skills will be improved and on the other part they will get practical skills
that can be capitalised at work.

3.1. Improving Problem Solving Skill

Information Technology Infrastructure Library (ITIL) is one of the most applied
methodologies of IT service management. ITIL defines the conceptual problem as
follows: “A cause of one or more incidents. The cause is not usually known at
the time a problem record is created.” [5] ‘Problem’ is distinctly different form
‘incident’, which are: “An unplanned interruption to an IT service or reduction in
the quality of an IT service” [5]. Hence, if something does not operate sufficiently
in a system, then it is an ‘incident’ and its root cause is a ‘problem’. Beyond
overcoming the incident the task is to discover and solve the problem.

A monitoring system is a great help for discovering and solving a problem.
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The Sense-Isolate-Diagnose-Repair way of solution can be applied with software
applications [14]. In this way after sensing the incident the next activities determine
the place of the problem and discover its root. In this mode failure is then overcome.
Monitoring software applications are able to generate events in case of malfunction
(sense), and they provide facilities for deep analysis (isolate-diagnose).

ITIL, developed by Charles Kepner and Benjamin Tregoe [5], recommend the
theoretical methods to solve a problem. It is.

Kepner and Tregoe state that Problem Analysis should be a system-
atic process of problem solving and should maximise the advantage of
knowledge and experience. They distinguish the following five phases
for Problem Analysis:

• Defining the problem;

• Describing the problem with regard to identity, location, time and
size;

• Establish possible causes;

• Testing the most probable cause;

• Verifying the true cause

[5]

To summarize, theoretical and practical teaching of monitoring develops the
problem solving skills of students; it shows a way how to solve problems (Kepner-
Tregoe method) that students practise when using software applications (sense-
isolation-diagnosis-repair).

3.2. Acquiring knowledge using in everyday professional life

Employees in both IT and economic fields can benefit from monitoring knowledge.
All multinational corporations use monitoring software in their everyday business
and increasingly more SMEs. Configuring software and continuously changing its
settings are both tasks attributable to IT experts. Reports can be made from the
state of IT services and from business achievement through measuring services.
These are the task of IT experts and business managers respectively.

Many enterprises suffer from the lack of common language between IT and
business experts. IT experts do not understand the processes allied business, and
business managers do not necessarily understand IT. Teaching monitoring knowl-
edge to students with economic interest mitigates the lack of a common language.
Students will know the possibilities of IT and they will have realistic expectations
in field of monitoring.
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4. The Place of Monitoring in Curricula

In Hungary teaching business processes and any monitoring supported by IT are
believed to be more of a specialized topic than general education. Hungarian types
of schools and levels of teaching related to technical and functional monitoring are
outlined next:

• In elementary and secondary schools students meet task managers and log
files of operating systems in a rudimentary approach. There is no further
reference to managing systems or networks.

• The exam of European Computer Driving Licence (ECDL) does not require
monitoring-like knowledge or competence [9].

• The lowest level where these skills are expected is the advanced level technical
training course Maintaining Computer Systems [10]. In the Network Manage-
ment part of ‘Software Deploying on Computer Systems’ deals with Basics of
Simple Network Management Protocol (SNMP), Configuration Management,
Remote Software Deployment, Monitoring, Help Desk, and Remote Console
[11].

In core studies of IT colleges and universities the topic of monitoring appears
chiefly in teaching operating systems. Retrieving information about operating sys-
tems is taught here (for example WMI). There are also possibilities to go deeper
into the topic of monitoring and can cover network, system or database monitoring.
Also at this level of teaching, standards and protocols of monitoring are reviewed.

To summarize, teaching the theory and practice of monitoring is the task of
higher education. It is useful for students with technical and economic IT interests
(See on chapter 3), consequently in-depth analysis can only be a specialization.

5. Developing Educational Environment

First step for developing an educational environment is to determine the taught
software (see Table 1). Multinational computer technology corporations give a
free run of their software for educational purpose to universities, therefore the
cost of software is not a significant factor. The advantage of freeware is that
students can install and try it at home on their own computing devices. The
capacity of the laboratories in a university context is limited so it is reasonable
to use software related to SMEs. If students are made familiar with more types
of software with different technology platforms and user interfaces would improve
teaching and learning.

The first experience about monitoring software that students should be exposed
relates to more general purpose tools because main types of monitoring can be pre-
sented. There are special monitoring tools, such as applications for monitoring
response time of transactions or monitoring user activities. Presenting one special
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monitoring tool can be the subject of a separate course in which technical issues can
be examined more deeply. Alternatively, students can elaborate special software
applications independently. At the Óbuda University students deliver a presenta-
tion about freely chosen monitoring software as a part of an assignment in accord
with their interests; they most often choose network or user activity monitoring
software.

The theory part of education about monitoring consists of the basics of ITIL
and ITIL’s section of monitoring. It also reviews problem solving generally related
to IT.

5.1. Virtual Environment

For effective education students ought to experience how monitoring softwareworks,
and manage at least one server and one client machine. This condition is achieved
by using monitoring software in a virtual environment.

Using virtual technology is also used in the teaching of operating systems in
schools. Students are given administrative privileges in virtual machines so that
they could not ‘destroy’ the host machine. For example,

“Virtual machines provide a secure environment within which stu-
dents may install, configure, and experiment with operating system,
network, and database software.” [15]

The effectiveness of such an approach was proved many times,

“Our experiences in deploying this approach to teach more than nine
hundred students have demonstrated the effectiveness of learning about
real production operating system kernel development using virtual plat-
forms.” [16]

Virtual machines are also used for isolating different pieces of software in teaching
laboratories. Software taught in different classes may interfere with others, but
deploying software on different virtual machines resolves this challenge. Such a
solution is also often useful for teachers as each one can develop their own laboratory
environment on a separate virtual machine. Operators deploy only host machines
and place virtual machines onto hosts.

Currently hardware is sufficiently powerful to run more VM on one host ma-
chine. Typically a server and a client and possibly an additional server (for example
a database) or a client with different platform, constitute a virtual network. At
the Óbuda University, a virtual network mostly consists of a server and two client
machines (Figure 1). The disadvantage of a system made up of VMs relates to
efficiency, as a real machine when it accesses the hardware is far superior. How-
ever, due to the hardware requirements of client machines, the one server two client
“configuration” that executes on one host machine overcomes the issues discussed
thus far.
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Figure 1: Typical virtual network for teaching monitoring

6. Experience

Within the faculty of Information Technology at the Óbuda University students
have many possibilities to familiarize themselves with monitoring software. Many
courses contain one or more classes linked to monitoring:

Students can attend the optional course ‘Introduction to IT Service Manage-
ment’ whose main topic is monitoring. Additionally, IT Service Management is
elaborated as a group of classes for specialisation. ITIL is taught as a theory course
with practice of the most important topics included within monitoring and a sep-
arate course to represent managing composite applications. Four tutorial classes
encompass composite application response time tracking. The topics of classes are
the following:

• On the monitoring practice related to the ITIL lectures, students are made
familiar with the operator tasks of a general purpose monitoring tools. This
provides a sound basis for the monitoring of composite applications.

• In the framework of IT Service Management specialization deeper monitor-
ing practices are taught in a course named as ‘Managing Composite Ap-
plications’. A transaction monitoring application is used. The subject of
monitoring is special in this case but the aim of monitoring and methodolo-
gies are identical to general purpose monitoring. Hence students are made
familiar with monitoring technologies and a special area of monitoring

• In the course ‘Introduction to IT Service Management’ three tutorials address
monitoring. After an introductory theory section students learn the version



Teaching of monitoring software 155

for SMEs as one of their most significant monitoring software applications.
In the first unit students use functionalities for operators, managing alerts
and understanding different views. In the second unit they come to know
the tasks of administrators, creating views and setting alerts. Finally, in the
third unit students study the similar functionalities of freeware monitoring
software.

Summary: Industrial technologies and best practises have emphasized the im-
portance of monitoring for a long period of time. There are many types of software
with monitoring features on the market to satisfy different needs.

In elementary and secondary education monitoring should not be included in
the curriculum because of its speciality. But monitoring technologies are sufficiently
widespread in industrial use, so students with technical and economic IT interests
can exploit their knowledge about monitoring when they seek employment. It is
practical to choose different types of software for teaching and to develop networks
with virtual machines.
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Abstract

The presented course book has been written for the lectures and seminars
of the subject Mathematics I, which is in the syllabus of the Faculty of En-
gineering, University of Debrecen. The book has an unusual approach to the
curriculum in mathematics. Although the topics follow the usual thematic of
the subject, the aim is not the teaching of mathematical concepts and tools,
but the demonstration of their application in different engineering and eco-
nomic fields, where the students will meet them. In this paper, we report on
our experiences of this teaching method and on the application of the book.

Keywords: Engineering application, mathematical tools

1. Introduction

In the University of Debrecen Faculty of Engineering – similarly to many higher
education institutes – the difficulties of the mass education come forward. Beside
the increase of the number of the students, the number of the full-time teachers
decreased. For measuring the high school mathematics knowledge of the students
we make the first year students to write a test, according to that we can say that
in the previous knowledge of our students there are big differences. One part of
them cannot meet the earlier created requirement system, cannot bring in his lag.

So many traditional mathematics course book was made in the last years in the
Faculty of Engineering, University of Debrecen, which contains the basic mathe-
matics substance. By the experience of the education the authors made decision:
some important applications of the mechanics, physics, and economics need to be
built into the substance of lectures and practices of mathematics.

157
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The authors have given an answer to the problem, and created a course book –
entitled “Mathematical tools in engineering applications” [6] – in which the exercises
are related to real technical problems. This way the students can realize that
learning mathematics is useful, because they can see the extended application of
mathematics in several engineering fields. Our approach emphasises why it is so
important to learn mathematical methods and concepts, and where and how they
can be applied.

This article reports on this teaching method and on the application of the book.
Some problems of teaching mathematics are presented in Section 2. The first part
of the course book has already been published; the content of it is reviewed in
Section 3. The new method has already been applied in two semesters [5]; the
experiences are presented in Section 4.

2. Motivation

International surveys show that the average Hungarian student loses 90% of his
mathematical knowledge in the first three years after graduating from secondary
school [11].

In the last few years a lot of publications reported on the rapid decreasing of
the mathematical knowledge – and in general the educational level – of students in
higher education [4] [7] [12]. Our experience is the same. It is also alarming that
the skill to apply mathematics and the fundamental mathematical knowledge of
graduated engineers show a decline. Sutherland and Pozzi [8] reporting: “There is
unprecedented concern amongst mathematicians, scientists and engineers in higher
education about the mathematical preparedness of new undergraduates”. The sit-
uation has not changed since. They identified two main reasons:

• broadening of college and university entrance requirements to enable students
to enter through vocational or other non traditional routes,

• the curriculum changes in students’ pre-university education.

Teachers dealing with Mathematics have probably had the experience that most
students find this subject hard. If they meet a new type of exercise that is a little
bit different from the ones they practised you can easily see that their knowledge is
superficial. But at the applied level of abstraction less and less student can receive
the necessary knowledge. Mathematics works with abstract concepts. This fact
makes the learning of it hard and time consuming. But the knowledge and under-
standing of concepts is vital for students to be able to build up their knowledge.
By now the situation has changed, and it has become clear that the traditional
teaching methods have to be reformed, because they are insufficient for handling
the situation.

European technical universities tried out some potential solutions [1] [2] [3]:

• reducing mathematics syllabus: this made the drastic decrease of the high
outstanding students’ number.
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• developing additional units: the students’ loability is low so this gave few
results.

• establishing mathematics support centres: but it turned that students with
incomplete knowledge would need regular and extensive knowledge replace-
ment.

Each of these has its own disadvantages.
Thus we found it vital to rethink the teaching of mathematics at our Faculty.

[9] [10] We have approached the problem from two points of view.
First, we found it essential to summarise and repeat that part of secondary

school mathematics and physics which is necessary as basic knowledge at our Fac-
ulty of Engineering. Besides, we intended to improve the logical way of thinking
and problem solving ability of students. As a result, we introduced the compulsory
subject “Basics of Natural Sciences”. On the other hand, the teaching of Mathemat-
ics I. is based on our new course book, the title of which is “Mathematical Tools in
Engineering Applications”. That book follows a new approach and uses problems
typically occurring in the fields of engineering and economics. However, it is im-
portant to note that in spite of the theoretical chapters that were written to clarify
the basic concepts and problems of the engineering or economic field it should still
be considered a course book of Mathematics, as the main purpose of the book is
to help students understand this subject. This can only be realized by simplifying
the engineering and economic problems to an appropriate level, so these kinds of
problems will not make it more difficult for the students to receive the necessary
mathematical knowledge. We hope, that with the didactically well-thought-out
usage of this way the level of acquirement of the Mathematics increases. From the
teacher’s point of view the usage of the system increases the time period that is
needed to get prepared for the classes.

3. Mathematical tools in engineering applications

In the course book “Mathematical Tools in Engineering Applications” the topics
follow the usual thematic of the subject, the aim is not the teaching of mathe-
matical concepts and tools, but the demonstration of their application in different
engineering and economic fields, where the students will meet them.

Our main goals are to help the students to meet the requirements of the cur-
riculum and have a more thorough understanding of Mathematics. We also wish
to meet the demands of mass education. We would also like to help our students
prepare for MSc level education, as according to our survey, 31% of our students
wish to continue their studies after graduation.

The 8 chapters of the course book can be divided into groups of exercises. Each
group of exercises starts with a theoretical summary, which provides a brief, but
concise and professionally adequate description of the given engineering field. This
is followed by a sample exercise with its solution and a series of similar exercises.
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Main topics: Plane geometry, Space geometry, Vector algebra, Plane coordinate
geometry, Complex numbers, Matrices. Linear functions and transformations, Sys-
tems of linear equations. The properties and graph of basic functions.

Figure 1 shows the different subchapters (which refer to the applications) within
the main topics. (Engineering Mechanics I = Statics I; Engineering Mechanics II
= Statics II; Engineering Mechanics III = Kinematics and Kinetics)

Figure 1

In the following we present two exercises as examples from three different chap-
ters. The titles of these chapters are: Plane geometry (Exercise group: “The geo-
metric relations of plane structures”) and Vector algebra (Exercise group: “Forces
and their resultant. Equilibrium of a particle”).

Example 3.1. The figure below shows a crank-mechanism. Calculate distance.
(Figure 2)

Figure 2
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Example 3.2. Three forces act on a screw-head as it is shown in figure. The
magnitudes of the forces and their angles relative to the x-axis are given. (Figure
3)

• Calculate the coordinates of the resultant of the three forces.

• Calculate the magnitude of the resultant and its angle relative to the x-axis.

• Construct the resultant of the three forces.

Figure 3

In the book, the same terms and terminology are used, as in the subjects, where
the mathematical tools are applied. It is especially important for the students to
be able to easily realize, that they meet with the same tools in mathematics as in
the other subjects.

4. Results

Mathematics I in the new approach was attended by 105 students, 58 mechanical
engineering, 28 building engineering, 16 architect and 3 engineering manager stu-
dents, in the first semester of 2009/10. At the end of the semester we asked 91
students to take part in our opinion poll about the course book and our new way
of teaching Mathematics I. The survey showed that 5,5% of our students consider
Mathematics I. to be the most difficult among all the subjects of the first semester,
and 50,5% of them see it as one of the three most difficult ones. Our course book
“Mathematical Tools in Engineering Applications” was regarded as “easily under-
standable” by 59,3% of them, and 96,7% of them find it useful in understanding
mathematics and also in their further studies (Figure 4).

84,6% of the students declared that the engineering problems helped him in
the understanding of mathematics (Figure 5). In the opinion of 27,5% of them
accomplishing Mathematics I is more difficult using engineering problems (Figure
6) and 37,4% of the questioned ones said that solving engineering problems is more
difficult than mathematical ones (Figure 7). Only 37% of the students said that his
secondary school knowledge is a good basis for the understanding of mathematics
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Figure 4

in the first semester. In the opinion Linear functions and transformations, Complex
numbers, Vector algebra were the three most difficult topics; and Plane geometry,
Matrices and Space geometry were the three easiest topics.

Figure 5

Mechanical Engineering students took the course in Engineering Physics in the
first semester of 2009/10, parallel with Mathematics I. From the total 288 Mechani-
cal Engineering students 47 chose to learn mathematics in the new approach. In the
midterm writing tests of Engineering Physics we asked exercises from the following
topics: free and constrained motion of a particle, electrostatics and DC currents,
heat transport (conduction, convection, radiation). The average achievement of the
total 288 students in Engineering Physics was 37,7%. The average achievement of
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Figure 6

Figure 7

the 47 among them, who attended Mathematics I in the new approach, was better,
42%. The students of Mathematics I in new approach were 1% better in the tasks
free and constrained motion of a particle, 6% better in the tasks electrostatics, 4%
better in the tasks DC currents, and 7% better in the tasks heat transport. Both
groups managed to solve DC currents tasks the best of all. Figure 9 shows the
result of tests.

Building Engineering students took the course in Engineering Physics in the
second semester. From the total 122 students, 19 attended Mathematics I in the
new approach. In the midterm writing tests of Engineering Physics we asked ex-
ercises from the following topics: free and constrained motion of a particle, ideal
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Figure 8

Figure 9

gases and gas mixtures, the processes of ideal gases, heat transport (conduction,
convection, radiation). The average achievement of the total 122 students was 54%.
The average achievement of those 19 students who attended Mathematics I in the
new approach was slightly better, 57%. The students of Mathematics I in new
approach were 1% better in the tasks free and constrained motion of a particle,
7% better in the tasks ideal gases, 6% better in the tasks heat transport. The low
rate of fulfilling the first tasks show, that the problem solving ability of Mechanical
Engineering students and Building Engineering students is poor in the field of free
and constrained motion of a particle. We found that there is enough time devoted
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for teaching of heat transport in Mathematics I in the new approach. The students
of Mathematics I scored their worst in the task related to processes of ideal gases.
We can admit that there is little time devoted for teaching of processes of ideal
gases in Mathematics I. Figure 10 shows the result of tests.

Figure 10

Mechanical Engineering students could take the course in Engineering Mechan-
ics II (Statics II) in the second semester of 2009/10, provided that they had accom-
plished Engineering Mechanics I before. In the midterm writing test of Engineering
Mechanics II we asked exercises from the following topics: state of stress, state of
strain, general Hooke’s law, Betti-theorem, Castigliano-theorem. From the total
89 students 24 had attended Mathematics I in the new approach. The average
achievement of the 89 students was 32,6%. The average achievement of those 24
among them who attended Mathematics I in the new approach was significantly
better, 37,2%.

Mechanical Engineering students could take the course in Engineering Mechan-
ics III (Kinematics and Kinetics) in the first semester of 2010/11, provided that
they had accomplished Engineering Mechanics I and II before. In the midterm
writing tests of Engineering Mechanics III we asked exercises from the following
topics: free and constrained motion of a particle, free and constrained motion of
a rigid disk. From the total 44 students 10 had attended Mathematics I in the
new approach. The average achievement of the 44 students was 34,7%. The aver-
age achievement of those 10 among them who attended Mathematics I in the new
approach was significantly better, 44,5%. The students of Mathematics I in new
approach were 10,5% better in the tasks free and constrained motion of a particle,
and were 9,2% better in the tasks free and constrained motion of a rigid disk. In
this exercise was the biggest difference between the two groups. We can admit
that there is enough time devoted for teaching of free and constrained motion in
Mathematics I in the new approach. Figure 11 shows the result of tests.

So we can say that we can reach quality improving with using Mathematics
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Figure 11

I in the new approach. Organizing the education in this way takes much more
time of the teacher, the effective usage of engineering problems requires continuous
developing work, but the results of the tests show that the invested work returns.
We can talk about mathematical knowledge only in case of those students who can
use the definitions and titles in practice as well.

5. Summary

The presented course book has been written for the lectures and seminars of the
subject Mathematics I, which is in the syllabus of the Faculty of Engineering,
University of Debrecen. The book has an unusual approach to the curriculum
in mathematics. This course book underline that why it so important to learn
mathematical methods and concepts and where can you use these. The main motive
of the authors for writing the course book “Mathematical Tools in Engineering
Applications” and for introducing a new kind of teaching method that uses real
engineering problems was to make the teaching of mathematics more effective.

We built several important applications from the syllabi of Engineering Me-
chanics, Physics and Economics into the lectures and seminars of Mathematics.
We hope that using this new educational method and the new course book the
relationship between Mathematics and the different special engineering subjects
becomes more and more clear for our students. In the future, we plan to further
develop and revise our new study material on the basis of continual feedback.

On the basis of our results we can conclude that the teaching of mathematics
becomes more effective applying engineering problems beside mathematical ones.
The achievement and motivation level of students increase this way, and the re-
sults of them will be better also in the other engineering subjects that require
mathematical knowledge.
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If a student studies the book again and again, the connection between mathe-
matics and the other subjects will be clearer for him or her.
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