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Abstract

In this paper, authors will present a new theorem and corollary on multi-
dimensional Laplace transformations. They also develop some applications
based on this results. The two-dimensional Laplace transformation is useful
in the solution of partial differential equations. Some illustrative examples
related to Laguerre polynomials are also provided.

Keywords: Two-dimensional Laplace transforms, second-order linear non-
homogenous partial differential equations, Laguerre polynomials.

MSC: 44A30, 35L05

1. Introduction

In [3] R. S. Dahiya established several new theorems for calculating Laplace
transform pairs of N-dimensions and two homogenous boundary value problems
related to heat equations were solved. In [4] J. Saberi Najafi and R. S. Dahiya
established several new theorems for calculating Laplace transforms of n-dimensions
and in the second part application of those theorems to a number of commonly used
special functions was considered, and finally, by using two dimensional Laplace
transform, one-dimensional wave equation involving special functions was solved.
Later in [1, 2] authors, established new theorems and corollaries involving systems
of two-dimensional Laplace transforms containing several equations.

The generalization of the well-known Laplace transform

L[f(t); s] =

∫ ∞

0

e−stf(t)dt,

3



4 A. Aghili, B. Salkhordeh Moghaddam

to n-dimensional is given by

Ln[f(t̄ ); s̄] =

∫ ∞

0

∫ ∞

0

· · ·
∫ ∞

0

exp(−s̄t̄ )f(t̄ )Pn(dt̄ ),

where t̄ = (t1, t2, . . . , tn), s̄ = (s1, s2, . . . , sn), s̄t̄ =
∑n

i=1 siti and Pn(dt̄ ) =
∏n

k=1 dtk. In addition to the notations introduced above, we will use the following
throughout this paper.

Let t̄υ = (tυ1 , t
υ
2 , . . . , t

υ
n) for any real exponent υ and let Pk(t̄ ) be the k-th

symmetric polynomial in the components tk of t̄. Then

P0(t̄υ) = 1,

P1(t̄υ) = tυ1 + tυ2 + . . .+ tυn,

P2(t̄υ) =
∑n

i,j=1,i<j
tυi t

υ
j ,

...

Pn(t̄υ) = tυ1 t
υ
2 . . . t

υ
n.

The inverse Laplace transform is given by

L−1[F (s̄); t̄ ] =

(
1

2iπ

)n ∫ a+i∞

a−i∞

∫ d+i∞

d−i∞
· · ·
∫ c+i∞

c−i∞
e−s̄t̄F (s̄)Pn(s̄)ds̄.

2. The main theorem

Theorem 2.1. Let

g(s) = L[f(t); s], F (s) = L[t−3/2g(1/t); s], H(s) = L[tf(t4); s].

If f(t), t−3/2g(1
t ) and tf(t4) are continuous and integrable on (0,∞), then

Ln

[

Pn(t̄−1/2)F
(
P 2

1 (t̄−1)
)
; s̄
]

= 4π(n+1)/2H [2
√

2P1(s̄
1/2)]

Pn(s̄1/2)
,

where n = 1, 2, . . . , N .

Proof. We have

g

(
1

t

)

=

∫ ∞

0

exp
(

−u
t

)

f(u)du. (2.1)

Multiply both sides of (2.1) by t−3/2 exp(−st), Re(s) > 0 and integrate with respect
to t on (0,∞) to get

∫ ∞

0

e−stg
(
t−1
)

t3/2
dt =

∫ ∞

0

∫ ∞

0

e−ste−
u
t f (u) t−3/2 dudt. (2.2)



Laplace transform pairs of N-dimensions. . . 5

Since the integral on the right side of (2.2) is absolutely convergent, we may change
the order of integration to obtain

∫ ∞

0

e−stg
(
t−1
)

t3/2
dt =

∫ ∞

0

f (u)

∫ ∞

0

e−st−u/tt−3/2 dt du. (2.3)

Evaluating the inner integral on the right side of (2.3), we get

F (s) =
√
π

∫ ∞

0

f (u) e−
√

su

√
u

du.

Now, on setting u = v4, replacing s by P 2
1 (t̄−1) and then multiplying both sides of

(2.3) by Pn(t̄−1/2)e−s̄t̄ and integrating with respect to t1, t2, . . . , tn from 0 to ∞,
leads to the statement. �

Corollary 2.2. Letting n = 2 we get from Theorem 2.1, that

L2

{

1√
xy
F

((
1

x
+

1

y

)2
)

;u, v

}

= 4π3/2H [2
√

2(
√
u+

√
v)]√

uv
. (2.4)

As an application of the above theorem and corollary, some illustrative examples
in two dimensions are also provided.

Example 2.3. Let f(t) = sin(
√
t), then F (s) = 2

√
π

1+4s ,

H(s) =
1

2
+

2
√
π

8

{

s cos

(
s2

4

)(

2S

(
s

2
√
π

)

− 1

)

+s sin

(
s2

4

)(

1 − 2C

(
s

2
√
π

))}

,

hence

L2

[

(xy)
3
2

4(x+ y)2 + x2y2
, u, v

]

=

√
π

uv

{

π(
√
u+

√
v) cos

(
2(
√
u+

√
v)2
)
(

2S

(
2(
√
u+

√
v)√

π

)

− 1

)

+(
√
u+

√
v) sin

(
2(
√
u+

√
v)2
)
(

1 − 2C

(
2(
√
u+

√
v)√

π

))

+
√
π

}

,

where Fresnel’s integrals are defined as following

C(x) =
1√
2π

∫ x

0

cos(t)√
t

dt, S(x) =
1√
2π

∫ x

0

sin(t)√
t

dt.

Example 2.4. If f(t) = ln(αt) then

F (s) =
1

s
{ln(α/s) − γ} and H(s) =

1

s
{ln(α) + 4(1 − γ − ln(s))}.
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Using (2.4), we arrive at

L2

[ √
xy

x+ y

(

ln

(
4(x+ y)2

α(xy)2

)

− 2γ

)

, u, v

]

= π
4 ln(

√
u+

√
v) − ln(α) + 6 ln(2) + 4(γ − 1)

2
√
uv(

√
u+

√
v)2

.

In the following example, we give an application of two-dimensional Laplace
transforms and complex inversion formula for calculating some of the series related
to Laguerre polynomials.

Example 2.5. We shall show that (see [6])

1.
∑∞

n=0 Ln(x)Ln(y)λn = 1
1−λe

−λ(x+y)
1−λ I0

(
2
√

λxy
1−λ

)

,

2.
∑∞

n=0 Ln(t)Ln(ξ) = etδ(t− ξ),
where Ln(x) is Laguerre polynomial and I0(x) is modified Bessel ’s function of
order zero.

Solution.

1. It is well known that L[Ln(x), p] = 1
p

(

1 − 1
p

)n

. Taking two-dimensional Laplace

transform of the left hand side, leads to the following

L2

[ ∞∑

n=0

Ln(x)Ln(y)λn, p, q

]

=

∫ ∞

0

∫ ∞

0

( ∞∑

n=0

Ln(x)Ln(y)λne−px−qy

)

dxdy.

Changing the order of summation and double integration to get

L2

[ ∞∑

n=0

Ln(x)Ln(y)λn, p, q

]

=

∞∑

n=0

∫ ∞

0

∫ ∞

0

Ln(x)Ln(y)λne−px−qy dxdy.

The value of the inner integral is

∞∑

n=0

λn

∫ ∞

0

∫ ∞

0

Ln(x)Ln(y)e−px−qy dxdy

=

∞∑

n=0

λn

{
1

pq

(

1 − 1

p

)n(

1 − 1

q

)n}

=
1

1 − λ

1

pq + k(p+ q) − k
,

where k = λ
1−λ . Using complex inversion formula for two-dimensional Laplace

transform to obtain,

∞∑

n=0

Ln(x)Ln(y)λn

=

(
1

2iπ

)2 ∫ a+i∞

a−i∞

∫ d+i∞

d−i∞
epx+qy 1

1 − λ

1

pq + k(p+ q) − k
dp dq
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=
1

1 − λ

1

2iπ

∫ a+i∞

a−i∞

{

1

2iπ

∫ d+i∞

d−i∞

epx

pq + k(p+ q) − k
dp

}

eqy dq

=
1

1 − λ

1

2iπ

∫ a+i∞

a−i∞

e−
kx(q−1)

q+k

q + k
eqy dq =

1

1 − λ
e−

λ(x+y)
1−λ I0

(
2
√
λxy

1 − λ

)

.

2. Taking two-dimensional Laplace transform of the left hand side, leads to the
following

L2

[ ∞∑

n=0

Ln(t)Ln(ξ), p, q

]

=

∫ ∞

0

∫ ∞

0

( ∞∑

n=0

Ln(t)Ln(ξ)e−pt−qξ

)

dt dξ.

Changing the order of summation and double integration to get,

L2

[ ∞∑

n=0

Ln(t)Ln(ξ), p, q

]

=

∞∑

n=0

∫ ∞

0

∫ ∞

0

Ln(t)Ln(ξ)e−pt−qξ dt dξ.

It is not difficult to show that the value of the inner integral is

∫ ∞

0

∫ ∞

0

Ln(t)Ln(ξ)e−pt−qξ dt dξ =
1

pq

(

1 − 1

p

)n(

1 − 1

q

)n

and ∞∑

n=0

1

pq

(

1 − 1

p

)n(

1 − 1

q

)n

=
1

p+ q − 1
.

Using complex inversion formula for two-dimensional Laplace transforms to obtain,

∞∑

n=0

Ln(t)Ln(ξ) =

(
1

2iπ

)2 ∫ a+i∞

a−i∞

∫ b+i∞

b−i∞

ept+qξ

p+ q − 1
dpdq.

The above double integral may be re-written as follows,

∞∑

n=0

Ln(t)Ln(ξ) =
1

2πi

∫ a+i∞

a−i∞
eqξ

{

1

2πi

∫ b+i∞

b−i∞

ept

p− (1 − q)
dp

}

dq.

The value of the inner integral by residue theorem is equal to e(1−q)t, upon substi-
tution of this value in double integral we get,

∞∑

n=0

Ln(t)Ln(ξ) =
1

2πi

∫ a+i∞

a−i∞
eqξe(1−q)t dq = et 1

2πi

∫ a+i∞

a−i∞
e−q(t−ξ) dq,

therefore ∞∑

n=0

Ln(t)Ln(ξ) = etδ(t− ξ).
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3. Solution to second-order linear partial differential

equations with constant coefficients

The general form of second-order linear partial differential equation in two in-
dependent variables is given by (see [5]).

Auxx +Buxy + Cuyy +Dux + Euy + Fu = q(x, y), 0 < x, y <∞, (3.1)

where A,B,C,D,E and F are given constant and q(x, y) is source function of x
and y or constant. We will use the following for the rest of this section (see [5, 6]).
If

u(x, 0) = f(x), u(0, y) = g(y), uy(x, 0) = f1(x),

ux(0, y) = g1(y), u(0, 0) = u0

(3.2)

and if their one-dimensional Laplace transformations are F (u), G(v), F1(u) and
G1(v), respectively, then

L2[u(x, y);u, v] =

∫ ∞

0

∫ ∞

0

u(x, t)e−ux−vt dxdt = U(u, v),

L2[uxx;u, v] = u2U(u, v) − uG(v) −G1(v),

L2[uxy;u, v] = uvU(u, v) − uF (u) − vG(v) − u(0, 0), (3.3)

L2[uyy;u, v] = v2U(u, v) − uF (u) − F1(u),

L2[ux;u, v] = uU(u, v) −G(v),

L2[uy;u, v] = vU(u, v) − F (u).

Applying double Laplace transformation term wise to partial differential equations
and the initial-boundary conditions in (3.2) and using (3.3), we obtain the trans-
formed problem

U(u, v) =
1

Au2 + Cv2 +Buv + Ev +Du+ F
{A(uG(v) +G1(v))

+B(uF (u) + vG(v) − u0) + C(vF (u) + F1(u))

+DG(v) + EF (u) +Q(u, v)}.

(3.4)

Now, in the following examples we illustrate the above method.

Example 3.1. Letting A = B = C = 0, we get

Dux + Euy + Fu = q(x, y), 0 < x, y <∞, (E/D > 0).

With initial boundary conditions

u(x, 0) = f(x), u(0, y) = g(y),
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application of the relationship (3.4) gives

U(u, v) =
DG(v) + EF (u) +Q(u, v)

Ev +Du+ F
. (3.5)

The inverse double Laplace transform of (3.5) leads to the formal solution

u(x, y) = e−
F
D xg

(

y − E

D
x

)

+ e−
F
E yf

(

x− D

E
y

)

+

{
1
D

∫ x

0 e
− F

D ξq(x− ξ, y − E
D ξ)dξ, if y > E

Dx,
1
E

∫ y

0
e−

F
E ηq(x− D

E η, y − η)dη, if y < E
Dx.

Example 3.2. If C = E = D = 0, A = 1, B = α, F = β, then (3.1) reduces to

uxx + αuxy + βu = q(x, y), 0 < x, y <∞.

With the following initial conditions

u(0, y) = g(y), ux(0, y) = g1(y), u(x, 0) = 0, u(0, 0) = u0

we obtain

U(u, v) =
1

u2 + αuv + β
{uG(v) +G1(v) + α(vG(v) − u0) +Q(u, v)}. (3.6)

The inverse double Laplace transform of (3.6) yields (see [7])

u(x, y) = L−1
2 [U(u, v)] = L−1

2

[
Q(u, v)

u2 + αuv + β

]

+ L−1
2

[
uG(v)

u2 + αuv + β

]

+ L−1
2

[
G1(v)

u2 + αuv + β

]

+ αL−1
2

[
vG(v)

u2 + αuv + β

]

+ αu0L
−1
2

[
1

u2 + αuv + β

]

or equivalently

u(x, y) =

∫ x

0

∫ ξ

0

J0

(

2
√

βη(x − ξ)
)

q(ξ − η, y − αη)dη dξ

+ g(y − αx) +
1

α

∫ αx

0

√

βη

αx− η
J1

(

2

√

βη

α
(x− η

α
)

)

g(y − η)dη

+
1

α

∫ αx

0

J0

(

2

√

βη

α
(x− η

α
)

)

g1(y − η) dη + g(y) − g(y − αx)

+
1

α

∫ αx

0

√

βη

αx− η

(

2 − αx

η

)

J1

(

2

√

βη

α
(x− η

α
)

)

g(y − η)dη

+

{

0, if y > αx,

αu0J0(
2
α

√

βy(αx− η)), if y < αx.



10 A. Aghili, B. Salkhordeh Moghaddam

4. Conclusions

The multi-dimensional Laplace transform provides powerful method for analyz-
ing linear systems. It is heavily used in solving differential and integral equations.
The main purpose of this work is to develop a method of computing Laplace trans-
form pairs of N-dimensions from known one-Dimensional Laplace transform and
making continuous effort in expanding the transform tables and in designing al-
gorithms for generating new inverses and direct transform from known ones. It is
clear that the theorems of that type described here can be further generated for
other type of functions and relations. These relations can be used to calculate new
Laplace transform pairs.

Acknowledgements. The authors would like to thank referees for their com-
ments and questions.
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Abstract

For a positive integer k > 3 let (u
(k)
m )m>0 be the Lucas sequence given by

u
(k)
0 = 0, u

(k)
1 = 1 and u

(k)
m+2 = ku

(k)
m+1 −u

(k)
m for all m > 0. In this paper, we

study the positive integers n such that

n − k

1 + (k − 2)(u
(k)
m )2

6∈ Z for any 3 6 k < n and m > 1.

Keywords: Diophantine Equations, Primes, Euler Function, Fibonacci Num-
bers

MSC: 11N25, 11N36

1. Introduction

For a positive integer k > 3 let (u
(k)
m )m>0 be the Lucas sequence given by

u
(k)
0 = 0, u

(k)
1 = 1 and u(k)

m+2 = ku
(k)
m+1−u

(k)
m for all m > 0. In this paper, we study

the positive integers n such that

n− k

1 + (k − 2)(u
(k)
m )2

6∈ Z for any 3 6 k < n and m > 1. (1.1)

Let N be the set of positive integers satisfying property (1.1). The study of this set
of integers is motivated by the study of the solutions of the Diophantine equation

x2
1 + · · · + x2

n = yx1 · · ·xn, n > 3, (1.2)

∗We thank the referee for suggestions that improved the quality of this paper.
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in positive integers x1, . . . , xn, y. Hurwitz [5], proved that the Diophantine equation
(1.2) has no solutions with y > n and has infinitely many solutions with y = n.
Herzberg [4], showed that there are only 15 values of n 6 301020 for which (1.2) has
no solutions with y < n. In particular, for any 2688 < n 6 301020, equation (1.2)
has solutions with y < n. Using Herzberg’s algorithm, we checked all n 6 108 and
didn’t find any other exceptional values. It is conjectured that for a sufficiently
large n, equation (1.2) has a solution with y < n. Let us remark that Hurwitz’s

results yield that (u
(k)
m+1−u

(k)
m , u

(k)
m −u(k)

m−1, 1, . . . , 1
︸ ︷︷ ︸

k−2

, k) is a solution of the equation

y2
1 + · · · + y2

k = zy1 · · · yk

for any k > 3 and m > 1. It is easy to check that

(u
(k)
m+1 − u(k)

m )(u(k)
m − u

(k)
m−1) = 1 + (k − 2)(u(k)

m )2.

Hence, if for a given n there exist 3 6 k < n andm > 1 such that
n− k

1 + (k − 2)(u
(k)
m )2

is an integer, then (u
(k)
m+1−u

(k)
m , u

(k)
m −u(k)

m−1, 1, . . . , 1
︸ ︷︷ ︸

n−2

, y) is a solution of (1.2), where

y =
(u

(k)
m+1 − u

(k)
m )2 + (u

(k)
m − u

(k)
m−1)

2 + k − 2

(u
(k)
m+1 − u

(k)
m )(u

(k)
m − u

(k)
m−1)

+
n− k

1 + (k − 2)(u
(k)
m )2

= k +
n− k

1 + (k − 2)(u
(k)
m )2

< n.

In particular, if for any sufficiently large n we could find such values of k and m,
then the conjecture would follow. Unfortunately, there are infinitely many values
of n which are in the set N , and this is the content of our paper.

2. Result

Our precise result is the following. For a set A of positive integers and a positive
real number x let A(x) = A ∩ [1, x].

Theorem 2.1. There exists x0 such that #N (x) > 0.09x/ logx for x > x0.

For the proof, we will need the following lemma. For a positive integer m let
φ(m) denote the Euler function of m.

Lemma 2.2. We have the estimate

S =
∑

k>3

∑

m>2

1

φ(1 + (k − 2)(u
(k)
m )2)

< 0.91. (2.1)
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Proof. Let ω(m) be the number of distinct prime factors of the positive integer
m. Thus, if p1 < p2 < · · · < pω(m) denote all the prime factors of m > 1, then

φ(m)

m
=

ω(m)
∏

i=1

(

1 − 1

pi

)

>

ω(m)
∏

i=1

(

1 − 1

i+ 1

)

=
1

ω(m) + 1
.

From here, we can deduce various things. For example, since m > 2ω(m), we get
that ω(m) 6 (logm)/(log 2), therefore the above inequality gives

φ(m)

m
>

1

(logm)/(log 2) + 1
=

log 2

log(2m)
. (2.2)

Then
1

φ(m)
6

log(2m)

m log 2
.

Applying this to 1 + (k − 2)(u
(k)
m )2, we get

1

φ(1 + (k − 2)(u
(k)
m )2)

6
log(2(1 + (k − 2)(u

(k)
m )2))

(log 2)(1 + (k − 2)(u
(k)
m )2)

.

For m > 2 and k > 3 we have that

1 + (k − 2)(u(k)
m )2 > 1 + (k − 2)(u

(k)
2 )2 > 1 + (k − 2)k2

> 10,

and the function log(2t)/t is decreasing for t > 2. So, we need a lower bound on

1 + (k − 2)(u
(k)
m )2.

It is well-known and easy to prove that if we write

αk =
k +

√
k2 − 4

2
and βk =

k −
√
k2 − 4

2

for the two roots of the quadratic equation x2 − kx+ 1 = 0, then

u(k)
m =

αm
k − βm

k

αk − βk
.

Note that αk − βk =
√
k2 − 4 and αkβk = 1. Hence,

1 + (k − 2)(u(k)
m )2 = 1 +

k − 2

(αk − βk)2
(
α2m

k + β2m
k − 2

)

> 1 +
1

k + 2

(
α2m

k − 2
)

=
α2m

k + k

k + 2
>

α2m
k

k + 2

>
(k2 − 4)m

k + 2
= (k − 2)m(k + 2)m−1. (2.3)
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Note that for k > 3 and m > 2 we have that (k − 2)m(k + 2)m−1 > 5. Thus,

1

φ(1 + (k − 2)(u
(k)
m )2)

<
log(2(k − 2)m(k + 2)m−1)

(log 2)(k − 2)m(k + 2)m−1

=
1

(k − 2)m(k + 2)m−1

+
m log(k − 2)

(log 2)(k − 2)m(k + 2)m−1

+
(m− 1) log(k + 2)

(log 2)(k − 2)m(k + 2)m−1
.

We shall apply the above inequality for all k > 4. The case k = 3 is special since in
this case u(2)

m = F2m for all n > 1, where (Fm)m>0 denotes the Fibonacci sequence
given by F0 = 0, F1 = 1 and Fm+2 = Fm+1 + Fm for all m > 0. Thus,

1 + (u(2)
m )2 = 1 + F 2

2m = F2m+1F2m−1,

therefore

φ(1 + (u(2)
m )2) = φ(F2m+1F2m−1) = φ(F2m+1)φ(F2m−1),

where the last relation holds because F2m+1 and F2m−1 are coprime. Summing up
over all m > 2 and k > 3, we find that

S < S0 + S1 + S2 + S3,

where

S0 =
∑

m>2

1

φ(F2m+1)φ(F2m−1)
,

S1 =
∑

k>4

∑

m>2

1

(k − 2)m(k + 2)m−1
,

S2 =
∑

k>4

∑

m>2

m log(k − 2)

(log 2)(k − 2)m(k + 2)m−1
,

S3 =
∑

k>4

∑

m>2

(m− 1) log(k + 2)

(log 2)(k − 2)m(k + 2)m−1
.

We now compute the four sums above. We computed,

S0 < 0.277.

To deduce this inequality, we first computed the first 100 terms in S0 getting an
answer < 0.2769. For n > 199, we have φ(n) > 48. Indeed, to see this note first
that

φ(n) >
n log 2

log(2n)
> 48,
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where the inequality on the left holds always by inequality (2.2) and the inequality
on the right holds for all n > 500. For n ∈ [199, 500], we checked that the minimal
value of the Euler function is 48. Next recall that a result of Luca [6] says that

φ(Fn) > Fφ(n)

holds for all n. In particular,

1

φ(F2n+1)φ(F2n−1)
6

1

Fφ(2n+1)Fφ(2n−1)
6

1

αφ(2n+1)+φ(2n−1)−4
,

where we use α = (1+
√

5)/2 together with the fact that the inequality Fn > αn−2

holds for all n > 2. Let m = φ(2n + 1) + φ(2n − 1) − 4. Since n > 100, we have
that 2n− 1 > 199, and so m > 92. Clearly,

4n− 4 > m >
(2n+ 1) log 2

log(4n+ 2)
+

(2n− 1) log 2

log(4n− 2)
− 4.

We checked that the square of the above lower bound is larger than the upper
bound for all n > 21, which is our case. This implies that the number of n such
that φ(2n+ 1) + φ(2n− 1) − 4 = m does not exceed m2 for n in our range. Note
that m is even. To summarize,

S0 6

100∑

n=1

1

φ(F2n−1)φ(F2n+1)
+
∑

ℓ>46

4ℓ2

α2ℓ
.

For ℓ > 12, we have that αℓ > 4ℓ2. Thus,

S0 <

100∑

n=1

1

φ(F2n−1)φ(F2n+1)
+
∑

ℓ>46

1

αℓ

Thus, the error in approximating S0 by its first 100 terms is

<
∑

ℓ>46

1

αℓ
=

1

α45(α− 1)
< 10−9.

So, indeed S0 < 0.277. Next,

S1 =
∑

k>4

1

(k − 2)

∑

m>1

1

(k2 − 4)m
=
∑

k>4

1

(k − 2)(k2 − 5)
< 0.0861.

Further,

S2 =
∑

k>4

log(k − 2)

(log 2)(k − 2)

∑

m>1

m+ 1

(k2 − 4)m
<
∑

k>4

2(k + 2) log(k − 2)

(log 2)(k2 − 5)2
< 0.2845.
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Finally,

S3 =
∑

k>4

log(k + 2)

(log 2)(k − 2)

∑

m>1

m

(k2 − 4)m
=
∑

k>4

(k + 2) log(k + 2)

(log 2)(k2 − 5)2
< 0.2607.

The upper bounds on S1, S2, S3 were computed with Mathematica. We shall
justify only S1. Clearly,

∑

m>1

1

(k2 − 4)m
=

1

(k2 − 4)
· 1

1 − 1
(k2−4)

=
1

(k2 − 5)
.

With Mathematica, we obtained that

1003∑

k=4

1

(k − 2)(k2 − 5)
< 0.08607,

while certainly

∑

k>1003

1

(k − 2)(k2 − 5)
<

∑

k>1003

1

(k − 2)3
=

∑

k>1001

1

k3
<

∫ ∞

1000

dt

t3

= − 1

2t2

∣
∣
∣

t=∞

t=1000
=

1

2 · 106
< 0.00001,

which together imply that S1 < 0.0861, as claimed. A similar argument can be
used to justify the bounds on S2 and S3. Hence,

S < 0.277 + 0.0861 + 0.2845 + 0.2607 = 0.9083 < 0.91,

which completes the proof of the lemma. �

Proof of Theorem 2.1. Assume that relation (1.1) does not hold with m = 1.
Then we get that (n−1)/(k−1) is an integer for some 3 6 k < n, and this certainly
is the case for some k if n− 1 is not a prime. From now on, we fix a large positive
real number x and we look only at numbers n 6 x such that n − 1 is prime and
relation (1.1) is not satisfied for some 3 6 k < n and m > 2. Then

n− 1 ≡ k − 1 (mod 1 + (k − 2)(u(k)
m )2).

Since k < n, it follows that n− 1 = (k− 1)+ ℓ(1+ (k− 2)(u
(k)
m )2) for some positive

integer ℓ, therefore 1 + (k − 2)(u
(k)
m )2 < x. Since m > 2, it follows that

x > 1 + (k − 2)(u(k)
m )2 > (k − 2)m(k + 2)m−1 > max{(k − 2)2(k + 2), 5m−1}

(see estimate (2.3)), leading to k = O(x1/3) and m = O(log x). So, there are only
O(x1/3 log x) such pairs (k,m). We may further assume that k − 1 is coprime to

1 + (k − 2)(u
(k)
m )2, for if not any common prime factor q of these two integers will
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be 6 k− 1 < n− 1 and will divide n− 1, which is impossible. For positive coprime
integers a and b we write π(x; a, b) for the number of primes p 6 x which are
congruent to a (mod b) and we write π(x) for the total number of prime numbers
p 6 x. It then follows that the number of positive integers n 6 x satisfying (1.1)
for any k > 3 and m > 1 is

#N (x) > π(x − 1) −
∑

(k,m)

1+(k−2)(u(k)
m )2<x

π(x; k − 1, 1 + (k − 2)(u(k)
m )2). (2.4)

Thus, it suffices to show that the above expression exceeds 0.09x/ logx for all
sufficiently large x.

Let x be large. We split the set of pairs (k,m) with 1 + (k − 2)(u
(k)
m )2 < x in

three subsets as follows:

(i) S1 = {(k,m) : 1 + (k − 2)(u
(k)
m )2 < (log x)10};

(ii) S2 = {(k,m) : (log x)10 6 1 + (k − 2)(u
(k)
m )2 < x1/2};

(iii) S3 = {(k,m) : x1/2 6 1 + (k − 2)(u
(k)
m )2 < x}.

If (k,m) ∈ S1, then, by the Siegel-Walfiz theorem (see, for example, page 133
in [1]), we have that

π(x; k − 1, 1 + (k − 2)(u(k)
m )2) =

π(x)

φ(1 + (k − 2)(u
(k)
m )2)

+O

(
x

exp(A
√

log x)

)

for some positive constant A. Note further that since for (k,m) ∈ S1 we have that

(log x)10 > 1 + (k − 2)(u(k)
m )2 > max{(k − 2)2(k + 2), 5m−1},

we get k ≪ (log x)10/3 and m≪ log log x≪ (log x)2/3, therefore

#S1 ≪ (log x)4.

If (k,m) ∈ S2, then by the Brun-Titchmarsh theorem (see, for example, [2,
Section 2.3.1, Theorem 1] or [3, Chapter 3, Theorem 3.7]), we have that

π(x; k − 1, 1 + (k − 2)(u(k)
m )2) ≪ x

φ(1 + (k − 2)(u
(k)
m )2) log

(
x

1+(k−2)(u
(k)
m )2

)

≪ π(x)

φ(1 + (k − 2)(u
(k)
m )2)

,

where we used the fact that

log

(

x

1 + (k − 2)(u
(k)
m )2

)

> log(x1/2) =
log x

2
,
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as well as the Prime Number Theorem.
Finally, if (k,m) ∈ S3, then

π(x; k − 1, 1 + (k − 2)(u(k)
m )2) 6

x

1 + (k − 2)(u
(k)
m )2

+ 1 ≪ x1/2.

Putting everything together, we get that

∑

(k,m)

1+(k−2)(u(k)
m )2<x

π(x; k − 1, 1 + (k − 2)(u(k)
m )2) 6 π(x)

∑

(k,m)∈S1

1

φ(1 + (k − 2)(u
(k)
m )2)

+O




x(log x)4

exp(A
√

log x)
+

∑

(k,m)∈S2

π(x)

φ(1 + (k − 2)(u
(k)
m )2)

+ x1/2#S3



 .

Note that #S3 ≪ x1/3 log x, and by the Prime Number Theorem, we have

x(log x)4

exp(A
√

log x)
= o(π(x))

as x→ ∞. Since the series (2.1) sums to S, it follows that both estimates

π(x)
∑

(k,m)∈S2

1

φ(1 + (k − 2)(u
(k)
m )2)

= o(π(x))

π(x)
∑

(k,m)∈S1

1

φ(1 + (k − 2)(u
(k)
m )2)

= Sπ(x) + o(π(x))

hold as x→ ∞. Thus,
∑

(k,m)

1+(k−2)(u(k)
m )2<x

π(x; k − 1, 1 + (k − 2)(u(k)
m )2) 6 π(x)(S + o(1)),

which together with estimate (2.4) and Lemma 2.2 implies the conclusion of the
theorem. �
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Abstract

Using an explicit computable expression of ordinary multinomials, we
establish three remarkable connections, with the q-generalized Fibonacci se-
quence, the exponential partial Bell partition polynomials and the density of
convolution powers of the discrete uniform distribution. Identities and vari-
ous combinatorial relations are derived.
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form distribution.
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1. Introduction

Ordinary multinomials are a natural extension of binomial coefficients, for an
appropriate introduction of these numbers see Smith and Hogatt [18], Bollinger [6]
and Andrews and Baxter [2]. These coefficients are defined as follows: Let q > 1
and L > 0 be integers. For an integer a = 0, 1, . . . , qL, the ordinary multinomial
(
L
a

)

q
is the coefficient of the a-th term of the following multinomial expansion

(
1 + x+ x2 + · · · + xq

)L
=
∑

a>0

(
L

a

)

q

xa, (1.1)

with
(
L
a

)

1
=
(
L
a

)
(being the usual binomial coefficient) and

(
L
a

)

q
= 0 for a > qL.

∗Research supported partially by LAID3 Laboratory of USTHB University.
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Using the classical binomial coefficient, one has
(
L

a

)

q

=
∑

j1+j2+···+jq=a

(
L

j1

)(
j1
j2

)

· · ·
(
jq−1

jq

)

. (1.2)

Some readily well known established properties are

the symmetry relation
(
L

a

)

q

=

(
L

qL− a

)

q

, (1.3)

the longitudinal recurrence relation
(
L

a

)

q

=

q
∑

m=0

(
L− 1

a−m

)

q

, (1.4)

and the diagonal recurrence relation

(
L

a

)

q

=

L∑

m=0

(
L

m

)(
m

a−m

)

q−1

. (1.5)

These coefficients, as for usual binomial coefficients, are built trough the Pascal
triangle, known as “Generalized Pascal Triangle”, see tables: 1, 2 and 3. One can
find the first values of the generalized triangle in SLOANE [17] as A027907 for q = 2,
A008287 for q = 3 and A035343 for q = 4.

As an illustration of recurrence relation, we give the triangles of trinomial,
quadrinomial and pentanomial coefficients:

Table 1: Triangle of trinomial coefficients:
(
L
a

)

2

L\a 0 1 2 3 4 5 6 7 8 9 10
0 1
1 1 1 1
2 1 2 3 2 1
3 1 3 6 7 6 3 1
4 1 4 10 16 19 16 10 4 1
5 1 5 15 30 45 51 45 30 15 5 1

Table 2: Triangle of quadrinomial coefficients:
(
L
a

)

3

L\a 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 1 1 1 1
2 1 2 3 4 3 2 1
3 1 3 6 10 12 12 10 6 3 1
4 1 4 10 20 31 40 44 40 31 20 10 4 1
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Table 3: Triangle of pentanomial coefficients:
(
L
a

)

4

L\a 0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 1
1 1 1 1 1 1
2 1 2 3 4 5 4 3 2 1
3 1 3 6 10 15 18 19 18 15 10 6 3 1
4 1 4 10 20 35 52 68 80 85 80 68 52 35 20 · · ·

Several extensions and commentaries about these numbers have been investi-
gated in the literature, for example Brondarenko [7] gives a combinatorial interpre-
tation of ordinary multinomials

(
L
a

)

q
as the number of different ways of distributing

“a” balls among “L” cells where each cell contains at most “q” balls.
Using this combinatorial argument, one can easily establish the following rela-

tion
(
L

a

)

q

=
∑

L1+2L2+···+qLq=a

(
L

L1

)(
L− L1

L2

)

· · ·
(
L− L1 − · · · − Lq−1

Lq

)

=
∑

L1+2L2+···+qLq=a

(
L

L1, L2 · · · , Lq

)

. (1.6)

For a computational view of the relation (1.6) see Bollinger [6]. Andrews and
Baxter [2] have considered the q-analog generalization of ordinary multinomials
(see also [19] for an exhaustive bibliography). They have defined the q-multinomial
coefficients as follows

[
L
a

](p)

q

=
∑

j1+j2+···+jq=a

q
∑ q−1

l=1 (L−jl)jl+1−
∑ q−1

l=q−p jl+1

[
L
j1

] [
j1
j2

]

· · ·
[
jq−1

jq

]

where [
L
a

]

=

[
L
a

]

q

=

{
(q)L / (q)a (q)L−a if 0 6 a 6 L
0 otherwise

is the usual q-binomial coefficient, and where (q)k =
∏∞

m=1 (1 − qm) /
(
1 − qk+m

)
,

is called q-series. This definition is motivated by the relation (1.2).
Another extension, the supernomials, has also been considered by Schilling and

Warnaar [16]. These coefficients are defined to be the coefficients of xa in the

expression of
∏N

j=1

(
1 + x+ · · · + xj

)Lj

A refinement of the q-multinomial coefficient is also considered for the trinomial
case by Warnaar [20].

Barry [3] gives a generalized Pascal triangle as

(
n

k

)

a(n)

:=

k∏

j=1

a (n− j + 1) /a (j) ,



24 H. Belbachir, S. Bouroubi, A. Khelladi

where a (n) is a suitably chosen sequence of integers.
Kallas [11] and Noe [14] give a generalization of Pascal’s triangle by considering

the coefficient of xa in the expression of (a0 + a1x+ · · · + aqx
q)

L
.

The main goal of this paper is to give some connections of the ordinary multino-
mials with the generalized Fibonacci sequence, the exponential Bell polynomials,
and the density of convolution powers of discrete uniform distribution. We will
give also some interesting combinatorial identities.

2. A simple expression of ordinary multinomials

If we denote xi the number of balls in a cell, the previous combinatorial inter-
pretation given by Brondarenko is equivalent to evaluate the number of solutions
of the system {

x1 + · · · + xL = a,
0 6 x1, . . . , xL 6 q.

(2.1)

Now, let us consider the system (2.1). For t ∈ ]−1, 1[, we have (see also Comtet [8,
Vol. 1, p. 92 (pb 16).])

∑

a>0

(
L

a

)

q

ta = (1 + t+ · · · + tq)L =
∑

06x1,...,xL6q

tx1+···+xL ,

and

(1 + t+ · · · + tq)
L

=
(
1 − tq+1

)L
(1 − t)

−L

=





L∑

j=0

(−1)
j

(
L

j

)

tj(q+1)








∑

j>0

(
j + L− 1

L− 1

)

tj



 .

By identification, we obtain the following theorem.

Theorem 2.1. The following identity holds

(
L

a

)

q

=

⌊a/(q+1)⌋
∑

j=0

(−1)
j

(
L

j

)(
a− j (q + 1) + L− 1

L− 1

)

. (2.2)

This explicit relation seems to be important since in contrast to relations (1.2),
(1.3) and (1.5), it allows to compute the ordinary multinomials with one summation
symbol.

In 1711, de Moivre (see [13] or [12, 3rd ed. p. 39]) solves the system (2.1) as the
right hand side of (2.2).

Corollary 2.2. We have the following identity

⌊n/2⌋
∑

j=0

(
n

j

)(
n− j

j

)

=

⌊n/3⌋
∑

j=0

(−1)j
(
n

j

)(
2n− 3j − 1

n− 1

)

.
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Proof. It suffices to use relation (6) in Theorem 2.1 for q = 2 and a = L = n. �

The left hand side of the equality has the following combinatorial meaning. It
computes the number of ways to distribute n balls into n boxes with 2 balls at
most into each box. Put a ball into each box, then choose j boxes for removing
the boxes located in them into j boxes chosen from the remaining n− j boxes.

3. Generalized Fibonacci sequences

Now, let us consider for q > 1, the “multibonacci” sequence (Φ
(q)
n )n>−q defined

by






Φ
(q)
−q = · · · = Φ

(q)
−2 = Φ

(q)
−1 = 0,

Φ
(q)
0 = 1,

Φ
(q)
n = Φ

(q)
n−1 + Φ

(q)
n−2 + · · · + Φ

(q)
n−q−1 for n > 1.

In [4], Belbachir and Bencherif proved that

Φ(q−1)
n =

∑

k1+2k2+···+qkq=n

(
k1 + k2 + · · · + kq

k1, k2, · · · , kq

)

,

and, for n > 1

Φ(q−1)
n =

⌊n/(q+1)⌋
∑

k=0

(−1)
k n− k (q − 1)

n− kq

(
n− kq

k

)

2n−1−k(q+1),

leading to

∑

k1+···+qkq=n

(
k1 + · · · + kq

k1, · · · , kq

)

=

⌊n/(q+1)⌋
∑

k=0

(−1)
k n− k (q − 1)

n− kq

(
n− kq

k

)

2n−1−k(q+1).

This is an analogous situation in writing above a multiple summation with one
symbol of summation. On the other hand, we establish a connection between the
ordinary multinomials and the generalized Fibonacci sequence:

Theorem 3.1. We have the following identity

Φ(q)
n =

qm−r
∑

l=0

(
n− l

l

)

q

, (3.1)

where m is given by the extended euclidean algorithm for division: n = m (q + 1)−r,
0 6 r 6 q.
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Proof. We have

Φ(q)
n =

∑

k1+2k2+···+(q+1)kq+1=n

(
k1 + k2 + · · · + kq+1

k1, k2, · · · , kq+1

)

=
∑

L>0

∑

k1+2k2+···+(q+1)kq+1=n

(
L

k1, k2, · · · , kq+1

)

=
∑

L>0

∑

k2+2k3+···+qkq+1=n−L

(
L

L− k2 − · · · − kq+1, k2, · · · , kq+1

)

=
∑

L>0

(
L

n− L

)

q

=
n∑

L> n
q+1

(
L

n− L

)

q

,

using the fact that
(
L
a

)

q
= 0 for a < 0 or a > qL

Now consider the unique writing of n given by the extended euclidean algorithm
for division: n = m (q + 1) − r, 0 6 r < q + 1 then n

q+1 = m− r
q+1 , which gives

Φ(q)
n =

qm−r
∑

k=0

(
m+ k

qm− r − k

)

q

=

qm−r
∑

k=0

(
m+ k

(q + 1)k + r

)

q

=

qm−r
∑

l=0

(
n− l

l

)

q

.

�

As an immediate consequence of Theorem 3.1, we obtain the following identities

Φ
(q)
(q+1)m =

qm
∑

l=0

(
(q + 1)m− l

l

)

q

=

qm
∑

k=0

(
m+ k

(q + 1) k

)

q

,

Φ
(q)
(q+1)m−1 =

qm−1
∑

l=0

(
(q + 1)m− l− 1

l

)

q

=

qm
∑

k=0

(
m+ k

(q + 1) k + 1

)

q

,

...

Φ
(q)
(q+1)m−r =

qm−r
∑

l=0

(
(q + 1)m− l − r

l

)

q

=

qm
∑

k=0

(
m+ k

(q + 1)k + r

)

q

.

For q = 1, we find the classical Fibonacci sequence:

F−1 = 0, F0 = 1, Fn+1 = Fn + Fn−1, for n > 0.

Thus, we obtain the well known identity

Fn =

⌊n/2⌋
∑

l=0

(
n− l

l

)

.
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Recently, in [5], the first author and Szalay prove the unimodality of the se-
quence uk =

(
n−k

k

)

q
associated to generalized Fibonacci numbers. More generally,

they establish the unimodality for all rays of generalized Pascal triangles by showing
that the sequence wk =

(
n+αk
m+βk

)

q
is log-concave, then unimodal.

4. Exponential partial Bell partition polynomials

In this section, we establish a connection of the ordinary multinomials with
exponential partial Bell partition polynomials Bn,L (t1, t2, . . .) which are defined
(see Comtet [8, p. 144]) as follows

1

L!




∑

m>1

tm
m!
xm





L

=
∑

n>L

Bn,L
xn

n!
, L = 0, 1, 2, . . . . (4.1)

An exact expression of such polynomials is given by

Bn,L (t1, t2, . . .) =
∑

k1+2k2+···=n
k1+k2+···=L

n!

k1!k2! · · · (1!)
k1 (2!)

k2 · · ·
tk1
1 t

k2
2 · · · .

In this expression, the number of variables is finite according to k1 +2k2 + · · · =
n.

Next, we give some particular values of Bn,L :

Bn,L (1, 1, 1, . . .) =

{
n
L

}

Stirling numbers of second kind,

Bn,L (0!, 1!, 2!, . . .) =

[
n
L

]

Stirling numbers of first kind,

Bn,L (1!, 2!, 3!, . . .) =
n!

L!

(
n− 1

n− L

)

. (4.2)

In [1], Abbas and Bouroubi give several extended values of Bn,L.

The connection with ordinary multinomials is given by the following result:

Theorem 4.1. We have the following identity

Bn,L (1!, 2!, . . . , (q + 1)!, 0, . . .) =
n!

L!

(
L

n− L

)

q

. (4.3)

Proof. Taking in (4.1) tm = m! for 1 6 m 6 q + 1 and zero otherwise, we obtain

(
x+ · · · + xq+1

)L
= L!

∑

n−L>0

Bn,L (1!, 2!, . . . , (q + 1)!, 0, . . .)
xn

n!
,
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from which it follows

∑

a>0

(
L

a

)

q

xa =
∑

n−L>0

L!

n!
Bn,L (1!, 2!, . . . , (q + 1)!, 0, . . .)xn−L.

�

Corollary 4.2. Let q > 1, L > 0 be integers, and a ∈ {0, 1, . . . , qL} . For q > a,
we have the following identity

(
L

a

)

q

=

(
L+ a− 1

a

)

.

Proof. Using the fact that Bn,L (1!, 2!, . . . , (q + 1)!, 0, . . .) = Bn,L (1!, 2!, 3!, . . .) for
q + 1 > n − L + 1, we obtain

(
L

n−L

)

q
=
(

n−1
n−L

)
for q > n − L. We conclude with

a = n− L. �

This is simply a combination with repetition permitted (i.e. multi combination).

5. Convolution powers of discrete uniform distribu-

tion

This section gives a connection between the ordinary multinomials and the
convolution power of the discrete uniform distribution. The right hand side of
identity (2.2) is a very well known expression. Indeed for q, L ∈ N, let us denote
by U⋆L

q the Lth convolution power of the discrete uniform distribution

Uq :=
1

q + 1
(δ0 + δ1 + · · · + δq) (δa is the Dirac measure),

then for a ∈ N (see de Moivre [13] or [10]), with respect to the counting measure,
its density is given by

P
(
U⋆L

q = a
)

=
1

(q + 1)
L

⌊a/(q+1)⌋
∑

j=0

(−1)
j

(
L

j

)(
a+ L− (q + 1) j − 1

L− 1

)

. (5.1)

Combining Theorem 2.1 and relation (5.1), we have the following result:

Corollary 5.1. Using the above notations, we obtain the following identity

P
(
U⋆L

q = a
)

=

(
L
a

)

q

(q + 1)
L
.
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It should be noted that the multinomials may be seen as the number of favorable
cases to the realization of the elementary event {a} .

It is easy to show that the distribution of U⋆L
q is symmetric by relation (1.3).

Corollary 5.2. We have the following identities

qL
∑

k=0

k

(
L

k

)

q

= (q + 1)L qL

2
,

qL
∑

k=0

k2

(
L

k

)

q

= (q + 1)L qL

2

(
qL

2
+
q + 2

6

)

,

qL
∑

k=0

k3

(
L

k

)

q

= (q + 1)L

(
qL

2

)2(
qL

2
+
q + 2

2

)

,

More generally, for m > 1, the following identity holds

qL
∑

k=0

km

(
L

k

)

q

= (q + 1)
L

∑

i1+i2+···+iL=m

(
m

i1, i2, . . . , iL

)

ui1ui2 · · ·uiL ,

where ui is the i-th moment of the random variable Uq.

Proof. It suffices to compute the expectation of U⋆L
q using, first the density distri-

bution and second the summation of uniform distributions. It also comes from the
application of the generating function of the distribution given by Corollary 5.1. �
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Abstract

In this paper, we address the following initial-boundary value problem






ut(x, t) = Lu(x, t) + r(x)(b − u(x, t))−p in Ω × (0, T ),
u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) > 0 in Ω,

where p > 2, Ω is a bounded domain in RN with smooth boundary ∂Ω, L is
an elliptic operator, b = const > 0, r ∈ C1(Ω), supx∈Ω r(x) > 0, r(x) is non-
negative in Ω, u0 ∈ C1(Ω), u0(x) is a nonnegative in Ω, supx∈Ω u0(x) < b.
Under some assumptions, we show that the solution of the above problem
quenches in a finite time, and its quenching time goes to that of the solution
of the following differential equation α′(t) = r0(b−α(t))−p, t > 0, α(0) = M ,
as M tends to b, where M = supx∈Ω u0(x) and r0 = supx∈Ω r(x). Finally, we
give some numerical results to illustrate our analysis.

Keywords: Nonlinear parabolic equation, Dirichlet boundary condition, nu-
merical quenching time, quenching

MSC: 35B40, 35B50, 35K60, 65M06

1. Introduction

Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Consider the
following initial-boundary value problem for a nonlinear parabolic equation with

31
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Dirichlet boundary condition and a potential of the from

ut(x, t) = Lu(x, t) + r(x)(b − u(x, t))−p in Ω × (0, T ), (1.1)

u(x, t) = 0 on ∂Ω × (0, T ), (1.2)

u(x, 0) = u0(x) > 0 in Ω, (1.3)

where p > 2, b = const > 0,

Lu =

N∑

i,j=1

∂

∂xi

(

aij(x)
∂u

∂xj

)

,

where aij : Ω → R, aij ∈ C1(Ω), aij = aji, 1 6 i, j 6 N, and there exists a constant
C > 0 such that

N∑

i,j=1

aij(x)ξiξj > C‖ξ‖2 ∀x ∈ Ω ∀ξ = (ξ1, . . . , ξN ) ∈ RN ,

where ‖.‖ stands for the Euclidean norm of RN .
The initial data u0 ∈ C1(Ω), u0(x) is a nonnegative in Ω, supx∈Ω u0(x) < b,

r ∈ C1(Ω), r(x) is nonnegative in Ω, supx∈Ω r(x) > 0. Here, (0, T ) is the maximal
time interval of existence of the solution u of (1.1)–(1.3), and by a solution, we
mean the following.

Definition 1.1. A solution of (1.1)–(1.3) is a function u(x, t) continuous in Ω ×
[0, T ), u(x, t) < b in Ω× [0, T ), and twice continuously differentiable in x and once
in t in Ω × (0, T ).

The time T may be finite or infinite. When T is infinite, then we say that the solu-
tion u exists globally. When T is finite, then the solution u develops a singularity
in a finite time, namely,

lim
t→T

‖u(·, t)‖∞ = b,

where ‖u(·, t)‖∞ = maxx∈Ω |u(x, t)|. In this last case, we say that the solution u
quenches in a finite time, and the time T is called the quenching time of the solution
u.

Throughout this paper, we suppose that there exists a ∈ Ω such that

M = sup
x∈Ω

u0(x) = u0(a) and r0 = sup
x∈Ω

r(x) = r(a).

Solutions of nonlinear parabolic equations which quench in a finite time have
been the subject of investigations of many authors (see [3–5, 7, 9–15, 18, 21, 22, 24–
26, 28, 29] and the references cited therein). In particular, the above problem has
been studied by many authors, and by standard methods based on the maximum
principle, local existence, uniqueness, quenching and global existence have been
treated (see [7, 23, 24, 29]). In this paper, we are interested in the asymptotic
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behavior of the quenching time. Our work was motivated by the paper of Friedman
and Lacey in [16], where they have considered the following initial-boundary value
problem

ut = ǫ∆u+ f(u) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) > 0 in Ω,

where f(s) is positive, increasing, convex function for nonnegative values of s,
∫∞
0

ds
f(s) < ∞, ǫ is a positive parameter. The initial data u0(x) is a continuous

function in Ω. Under some additional conditions on the initial data, they have
proved that the solution u of the above problem blows up in a finite time, and its
blow-up time goes to that of the solution of the following differential equation

α′(t) = f(α(t)), α(0) = M,

as ǫ goes to zero, where M = supx∈Ω u0(x) (we say that a solution blows up in a
finite time if it attains the value infinity in a finite time). Also in [28], Nabongo
and Boni have considered the problem (1.1)–(1.3) in the case where the potential
r(x) = 1 and the operator L is replaced by ǫL. They have obtained a similar result
as that found in [16] by Friedman and Lacey. Let us notice that for this kind of
problems, other parameters have been taken such that the norm of the initial data
(see, for instance [17]) in the case of blow-up problems. In the present paper, we
also take the norm of the initial data as parameter and obtain an analogous result
using both a modification of Kaplan’s method (see [20]) and a method based on the
construction of upper solutions. Our paper is written in the following manner. In
the next section, under some conditions, we show that the solution u of (1.1)–(1.3)
quenches in a finite time, and its quenching time goes to that of the solution of a
certain differential equation as the norm of the initial data goes to b. Finally, in
the last section, we give some numerical results to illustrate our analysis.

2. Quenching times

In this section, under some assumptions, we show that the solution u of (1.1)–
(1.3) quenches in a finite time, and its quenching time tends to that of the solution
of a certain differential equation as M tends to b.

In the introduction of the paper, we have mentioned that there exists a ∈ Ω
such that r0 = supx∈Ω r(x) = r(a) and M = supx∈Ω u0(x) = u0(a). Consider the
following eigenvalue problem

−Lψ = λδψ in B(a, δ), (2.1)

ψ = 0 on ∂B(a, δ),

ψ > 0 in B(a, δ),
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where δ > 0, such that, B(a, δ) = {x ∈ RN ; ‖x − a‖ < δ} ⊂ Ω. It is well known
that the above eigenvalue problem admits a solution (ψ, λδ) such that 0 < λδ 6 D

δ2 ,
where D is a positive constant which depends only on the upper bound of the
coefficients of the operator L and the dimension N . We can normalize ψ so that
∫

B(a,δ) ψdx = 1.

Now, we are in a position to state the main result of this paper.

Theorem 2.1. Let K be an upper bound of the first derivatives of u0 and r. Sup-
pose that supx∈Ω u0(x) = M > 0 and let A = (1 + bDK22p)/r0. If

b−M < min{1, A−3/(p+1), (Kdist(a, ∂Ω))3/(p+1)},

then the solution u of (1.1)–(1.3) quenches in a finite time, and its quenching time
T satisfies the following estimates

0 6 T − TM 6
1

r0

(

1 +
A

p+ 1

)

(b−M)(4p+1)/3 + o((b −M)(4p+1)/3),

where TM = (b−M)p+1

r0(p+1) is the quenching time of the solution α(t) of the differential

equation defined as follows

α′(t) = r0(b− α(t))−p, t > 0, α(0) = M.

Proof. Since u0 ∈ C1(Ω) and r ∈ C1(Ω), invoking the mean value theorem and
the triangle inequality, we find that

u0(x) > M − (b −M)(p+1)/3 for x ∈ B(a, δ),

r(x) > r0 − (b −M)(p+1)/3 for x ∈ B(a, δ),

where δ = (b−M)(p+1)/3

K . Let w(x, t) be the solution of the following initial-boundary
value problem

wt(x, t) − Lw(x, t) − r(x)(b − w(x, t))−p = 0 in B(a, δ) × (0, T ∗), (2.2)

w(x, t) = 0 on ∂B(a, δ) × (0, T ∗),

w(x, 0) = u0(x) in B(a, δ),

where (0, T ∗) is the maximal time interval of existence of the solution w. By an
application of the maximum principle, we see that w is nonnegative in B(a, δ) ×
(0, T ∗), because the initial data is nonnegative in B(a, δ). Introduce the function
v(t) defined as follows

v(t) =

∫

B(a,δ)

w(x, t)ψ(x)dx for t ∈ [0, T ∗).

Take the derivative of v in t and use (2.2) to obtain

v′(t) =

∫

B(a,δ)

ψLwdx+

∫

B(a,δ)

r(x)(b − w)−pψdx for t ∈ (0, T ∗).
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Applying Green’s formula, we arrive at

v′(t) =

∫

B(a,δ)

wLψdx+

∫

B(a,δ)

r(x)(b − w)−pψdx for t ∈ (0, T ∗).

Due to the fact that r(x) > r0 − (b −M)(p+1)/3 > 0 for x ∈ B(a, δ), using (2.1)
and Jensen’s inequality, we discover that

v′(t) > −λδv(t) + (r0 − (b −M)(p+1)/3)(b − v(t))−p.

Let us notice that 0 6 v(t) 6 b for t ∈ (0, T ∗), and

0 < λδ 6
D

δ2
=

DK2

(b −M)(2p+2)/3
.

We deduce that

v′(t) > r0(b− v(t))−p

(

1 − (b −M)(p+1)/3

r0
− bDK2(b− v(t))p

r0(b−M)(2p+2)/3

)

for t ∈ (0, T ∗).

Obviously, we have (b −M)(p+1)/3 6 (b−M)(p−2)/3 and

b − v(0) 6 b−M + (b−M)(p+1)/3 6 2(b−M),

which implies that

v′(0) > r0(b− v(0))−p(1 −A(b −M)(p−2)/3) > 0.

We claim that
v′(t) > 0 for t ∈ (0, T ∗).

To prove the claim, we argue by contradiction. Indeed, let t0 be the first t ∈ (0, T ∗)
such that v′(t) > 0 for t ∈ [0, t0) but v′(t0) = 0. Thus, we have v(t0) > v(0), which
implies that

0 = v′(t0) > r0(b− v(0))−p(1 −A(b −M)(p−2)/3) > 0.

But, this is a contradiction, and the claim is proved. Consequently, we get

b− v(t) 6 b− v(0) 6 2(b−M) for t ∈ (0, T ∗),

and with the help of the above inequalities, we arrive at

v′(t) > r0(b− v(t))−p(1 −A(b −M)(p−2)/3) for t ∈ (0, T ∗).

This estimate may be rewritten as follows

(b− v)pdv > r0(1 −A(b −M)(p−2)/3)dt for t ∈ (0, T ∗).
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Integrate the above inequality over (0, T ∗) to obtain

(b− v(0))p+1

p+ 1
> r0(1 −A(b −M)(p−2)/3)T ∗,

which implies that

T ∗ 6
(b−M + (b −M)(p+1)/3)p+1

r0(p+ 1)(1 −A(b −M)(p−2)/3)
.

We conclude that w quenches in a finite time because the quantity on the right
hand side of the above inequality is finite. On the other hand, by the maximum
principle, we have u > 0 in Ω × (0, T ). Exploiting this estimate, it is easy to see
that

ut − Lu− r(x)(1 − u)−p > wt − Lw − r(x)(1 − w)−p in B(a, δ) × (0, T∗),

u > w on ∂B(a, δ) × (0, T∗),

u(x, 0) > w(x, 0) in B(a, δ),

where T∗ = min{T, T ∗}. It follows from the maximum principle that

u(x, t) > w(x, t) in B(a, δ) × (0, T∗),

which implies that

T 6 T ∗ 6
(b−M + (b−M)(p+1)/3)p+1

r0(p+ 1)(1 −A(b−M)(p−2)/3)
. (2.3)

Indeed, suppose that T > T ∗. We have ‖u(·, T ∗)‖∞ > ‖w(·, T ∗)‖∞ = b. But, this
is a contradiction because (0, T ) is the maximal time interval of existence of the
solution u. Now, setting z(x, t) = α(t) in Ω × [0, T0), it is not hard to see that

zt − Lz − r(x)(1 − z)−p = 0 in Ω × (0, T0),

z > 0 on ∂Ω × (0, T0),

z(x, 0) > u0(x) in Ω.

The maximum principle implies that 0 6 u(x, t) 6 z(x, t) = α(t) in Ω × (0, T 0),
where T 0 = min{T0, T }. We infer that

T > T0 =
(b−M)p+1

r0(p+ 1)
. (2.4)

Indeed, suppose that T0 > T, which implies that α(T ) > ‖u(·, T )‖∞ = b. But, this
is a contradiction because (0, T0) is the maximal time interval of existence of the
solution α(t). Apply Taylor’s expansion to obtain

(b−M + (b −M)(p+1)/3)p+1 = (b −M)p+1
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+(p+ 1)(b −M)(4p+1)/3 + o((b −M)(4p+1)/3),

1

1 −A(b −M)(p−2)/3
= 1 +A(b−M)(p−2)/3 + o((b −M)(p−2)/3).

Use (2.3), (2.4) and the above relations to complete the rest of the proof. �

Remark 2.2. Let us notice that the estimates obtained in Theorem 2.1 may be
rewritten in the following form

0 6
T

TM
− 1 6 (p+ 1 +A)(b −M)(p−2)/3 + o((b −M)(p−2)/3).

We deduce that limM→b
T

TM
= 1.

3. Numerical results

In this section, we give some computational results to confirm the theory es-
tablished in the previous section. We consider the radial symmetric solution of the
initial-boundary value problem below

ut = ∆u+
1

‖x‖ + 1
(1 − u)−p in B × (0, T ),

u = 0 on S × (0, T ),

u(x, 0) = u0(x) in B,

where B = {x ∈ RN ; ‖x‖ < 1}, S = {x ∈ RN ; ‖x‖ = 1} and u0(x) = M cos(π‖x‖
2 )

with M ∈ (0, 1). The above problem may be rewritten in the following form

ut = urr +
N − 1

r
ur +

1

r + 1
(1 − u)−p, r ∈ (0, 1), t ∈ (0, T ), (3.1)

ur(0, t) = 0, u(1, t) = 0, t ∈ (0, T ), (3.2)

u(r, 0) = ϕ(r), r ∈ (0, 1), (3.3)

where ϕ(r) = M cos(πr
2 ). We start by the construction of some adaptive schemes

as follows. Let I be a positive integer and let h = 1/I. Define the grid xi = ih,

0 6 i 6 I, and approximate the solution u of (3.1)–(3.3) by the solution U
(n)
h =

(U
(n)
0 , . . . , U

(n)
I )T of the following explicit scheme

U
(n+1)
0 − U

(n)
0

∆tn
= N

2U
(n)
1 − 2U

(n)
0

h2
+ (1 − U

(n)
0 )−p,

U
(n+1)
i − U

(n)
i

∆tn
=
U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)

ih

U
(n)
i+1 − U

(n)
i−1

2h



38 T.K. Boni, B.Y. Diby

+
1

ih+ 1
(1 − U

(n)
i )−p, 1 6 i 6 I − 1,

U
(n)
I = 0, U

(0)
i = M cos

(
ihπ

2

)

, 0 6 i 6 I,

where n > 0. In order to permit the discrete solution to reproduce the properties
of the continuous one when the time t approaches the quenching time T , we need
to adapt the size of the time step so that we take

∆tn = min

{
h2

2N
, h2(1 − ‖U (n)

h ‖∞)p+1

}

with ‖U (n)
h ‖∞ = sup06i6I |U (n)

i |. Let us notice that the restriction on the time
step ensures the nonnegativity of the discrete solution. We also approximate the
solution u of (3.1)–(3.3) by the solution U (n)

h of the implicit scheme below

U
(n+1)
0 − U

(n)
0

∆tn
= N

2U
(n+1)
1 − 2U

(n+1)
0

h2
+ (1 − U

(n)
0 )−p,

U
(n+1)
i − U

(n)
i

∆tn
=
U

(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+

(N − 1)

ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h

+
1

ih+ 1
(1 − U

(n)
i )−p, 1 6 i 6 I − 1,

U
(n+1)
I = 0, U

(0)
i = M cos

(
ihπ

2

)

, 0 6 i 6 I.

As in the case of the explicit scheme, here, we also choose

∆tn = h2(1 − ‖U (n)
h ‖∞)p+1.

For the above implicit scheme, the existence and nonnegativity of the discrete
solution are also guaranteed using standard methods (see, for instance [6]).
We note that

lim
r→0

ur(r, t)

r
= urr(0, t),

which implies that

ut(0, t) = Nurr(0, t) + (1 − u(0, t))−p for t ∈ (0, T ).

This observation has been taken into account in the construction of the above
schemes at the first node. We need the following definition.

Definition 3.1. We say that the discrete solution U
(n)
h of the explicit scheme or

the implicit scheme quenches in a finite time if limn→∞ ‖U (n)
h ‖∞ = 1, and the series

∑∞
n=0 ∆tn converges. The quantity

∑∞
n=0 ∆tn is called the numerical quenching

time of the discrete solution U (n)
h .
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In the following tables, in rows, we present the numerical quenching times, the
numbers of iterations, the CPU times and the orders of the approximations corres-
ponding to meshes of 16, 32, 64, 128. We take for the numerical quenching time
tn =

∑n−1
j=0 ∆tj which is computed at the first time when

∆tn = |tn+1 − tn| 6 10−16.

The order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log 2
.

Numerical experiments

First case: p = 3, N = 2, M = 0.90

Table 1. Numerical quenching times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method.

I tn n CPUt s
16 2.5257 e-5 1361 1 -
32 2.5174 e-5 5100 3 -
64 2.5186 e-5 19007 32 2.79
128 2.5226 e-5 70461 2182 1.74

Table 2. Numerical quenching times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method.

I tn n CPUt s
16 2.5258 e-5 1361 1 -
32 2.5174 e-5 5100 6 -
64 2.5186 e-5 19007 155 2.81
128 2.5226 e-5 70461 5534 1.74

Second case: p = 3, N = 2, M = 0.95

Table 3. Numerical quenching times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the explicit Euler method.

I tn n CPUt s
16 1.5725 e-6 1183 1 -
32 1.5657 e-6 4384 3 -
64 1.5642 e-6 16124 44 2.18
128 1.5641 e-6 58833 2373 3.91

Table 4. Numerical quenching times, numbers of iterations, CPU times (seconds)
and orders of the approximations obtained with the implicit Euler method.
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I tn n CPUt s
16 1.5725 e-6 1183 1 -
32 1.5657 e-6 4384 4 -
64 1.5642 e-6 16124 103 2.18
128 1.5641 e-6 58833 3366 3.91

Remark 3.2. If we consider the problem (3.1)–(3.3) in the case where the initial
data ϕ(r) = 0.9 cos(πr

2 ) and p = 3, then it is not hard to see that the quenching time
of the solution of the differential equation defined in Theorem 2.1 equals 2.5 e-5.
We observe from Tables 1-2 that the numerical quenching time is approximately
equal 2.5 e-5. This result has been proved in Theorem 2.1. When the initial data
ϕ(r) = 0.95 cos(πr

2 ) and p = 3, then we find that the quenching time of the solution
of the differential equation defined in Theorem 2.1 equals 1.5625 e-5. We discover
from Tables 3–4 that the numerical quenching time is approximately equal 1.5625
e-6 which is a result proved in Theorem 2.1.
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Abstract

This contribution is a continuation of [1, 3, 14]. The concept of subcom-
patibility between single maps and between single and multivalued maps is
used as a tool for proving existence and uniqueness of common fixed points
on complete metric and symmetric spaces. Extensions of known results, in
particularly results given by Djoudi and Aliouche, Elamrani and Mehdaoui,
Pathak et al. are thereby obtained.
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patible maps of type (A), (B), (C) and (P ), weakly compatible maps, δ-
compatible maps, subcompatible maps, D-maps, integral type, common fixed
point theorems, metric space.

MSC: 47H10, 54H25

1. Introduction and preliminaries

Let (X , d) be a metric space and let B(X ) be the class of all nonempty bounded
subsets of X . For all A,B in B(X ), define

δ(A,B) = sup {d(a, b) : a ∈ A, b ∈ B} .

If A = {a}, we write δ(A,B) = δ(a,B). Also, if B = {b}, it yields that δ(A,B) =
d(a, b).

From the definition of δ(A,B), for all A,B,C in B(X ) it follows that

δ(A,B) = δ(B,A) > 0,

δ(A,B) 6 δ(A,C) + δ(C,B),

43
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δ(A,A) = diamA,

δ(A,B) = 0 iff A = B = {a} .

In his paper [15], Sessa introduced the notion of weak commutativity which
generalized the notion of commutativity.

Later on, Jungck [6] gave a generalization of weak commutativity by introducing
the concept of compatibility.

Again, to generalize weakly commuting maps, the same author with Murthy
and Cho [8] introduced the concept of compatible maps of type (A).

Extending type (A), Pathak and Khan [13] made the notion of compatible maps
of type (B).

In [11], the concept of compatible maps of type (P ) was introduced and com-
pared with compatible and compatible maps of type (A).

In 1998, Pathak, Cho, Kang and Madharia [12] defined the notion of compatible
maps of type (C) as another extension of compatible maps of type (A).

In his paper [7], Jungck generalized all the concepts of compatibility by giving
the notion of weak compatibility (subcompatibility).

The authors of [9] extended the concept of compatible maps to the setting of
single and multivalued maps by giving the notion of δ-compatible maps.

Also, the same authors [10] extended the definition of weak compatibility to the
setting of single and multivalued maps by introducing the concept of subcompatible
maps.

In their paper [2], Djoudi and Khemis introduced the notion of D-maps which
is a generalization of δ-compatible maps.

Definition 1.1 ([4]). A sequence {An} of nonempty subsets of X is said to be
convergent to a subset A of X if:

(i) each point a ∈ A is the limit of a convergent sequence {an}, where an ∈ An

for n ∈ N,
(ii) for arbitrary ǫ > 0, there exists an integer m such that An ⊆ Aǫ for n > m,

where Aǫ denotes the set of all points x in X for which there exists a point a in A,
depending on x, such that d(x, a) < ǫ.

Lemma 1.2 ([4, 5]). If {An} and {Bn} are sequences in B(X ) converging to A
and B in B(X ), respectively, then the sequence {δ(An, Bn)} converges to δ(A,B).

Lemma 1.3 ([5]). Let {An} be a sequence in B(X ) and y be a point in X such
that δ(An, y) → 0. Then the sequence {An} converges to the set {y} in B(X ).

Definition 1.4 ([15]). The self-maps f and g of a metric space X are said to be
weakly commuting if d(fgx, gfx) 6 d(gx, fx) for all x ∈ X .

Definition 1.5 ([6, 8, 13, 12, 11]). The self-maps f and g of a metric space X are
said to be

(1) compatible if
lim

n→∞
d(fgxn, gfxn) = 0,



Common fixed point theorems for pairs of single and multivalued D-maps. . . 45

(2) compatible of type (A) if

lim
n→∞

d(fgxn, g
2xn) = 0 and lim

n→∞
d(gfxn, f

2xn) = 0,

(3) compatible of type (B) if

lim
n→∞

d(fgxn, g
2xn) 6

1

2

[

lim
n→∞

d(fgxn, f t) + lim
n→∞

d(ft, f2xn)
]

,

lim
n→∞

d(gfxn, f
2xn) 6

1

2

[

lim
n→∞

d(gfxn, gt) + lim
n→∞

d(gt, g2xn)
]

,

(4) compatible of type (C) if

lim
n→∞

d(fgxn, g
2xn) 6

1

3

[

lim
n→∞

d(fgxn, f t)

+ lim
n→∞

d(ft, f2xn) + lim
n→∞

d(ft, g2xn)
]

,

lim
n→∞

d(gfxn, f
2xn) 6

1

3

[

lim
n→∞

d(gfxn, gt)

+ lim
n→∞

d(gt, g2xn) + lim
n→∞

d(gt, f2xn)
]

,

(5) compatible of type (P ) if

lim
n→∞

d(f2xn, g
2xn) = 0

whenever {xn} is a sequence in X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some

t ∈ X .

Definition 1.6 ([7]). The self-maps f and g of a metric space X are called weakly
compatible if fx = gx, x ∈ X implies fgx = gfx.

Definition 1.7 ([9]). The maps f : X → X and F : X → B(X ) are δ-compatible
if

lim
n→∞

δ(Ffxn, fFxn) = 0

whenever {xn} is a sequence in X such that fFxn ∈ B(X ), fxn → t and Fxn → {t}
for some t ∈ X .

Definition 1.8 ([10]). Maps f : X → X and F : X → B(X ) are subcompatible if
they commute at coincidence points; i.e., for each point u ∈ X such that Fu =
{fu}, we have Ffu = fFu.

Definition 1.9 ([2]). The maps f : X → X and F : X → B(X ) are said to be
D-maps iff there exists a sequence {xn} in X such that for some t ∈ X

lim
n→∞

fxn = t and lim
n→∞

Fxn = {t} .
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Recently in 2007, Pathak et al. [14] established a general common fixed point
theorem for two pairs of weakly compatible maps satisfying integral type implicit
relations. The first main object of this paper is to prove a common fixed point
theorem for a quadruple of maps satisfying certain integral type implicit relations.
Our result extended the result of [14] to the setting of single and multivalued maps.

For this consideration we need the following:
Let Φ = {ϕ : R+ → R is a Lebesgue-integrable map which is summable} and

let F be the set of all continuous functions F : R6
+ → R+ satisfying the following

conditions:
(Fa)

∫ F (u,0,0,u,u,0)

0
ϕ(t)dt 6 0 implies u = 0;

(Fb)
∫ F (u,0,u,0,0,u)

0 ϕ(t)dt 6 0 implies u = 0.

The function F satisfies the condition (F1) if
∫ F (u,u,0,0,u,u)

0 ϕ(t)dt > 0 for all
u > 0.

2. Main results

Theorem 2.1. Let f, g be self-maps of a metric space (X , d) and let F,G : X →
B(X ) be two multivalued maps such that

(1) FX ⊆ gX and GX ⊆ fX ,
(2)

∫ F (δ(Fx,Gy),d(fx,gy),δ(fx,Fx),δ(gy,Gy),δ(fx,Gy),δ(gy,Fx))

0

ϕ (t) dt 6 0

for all x, y in X , where F ∈ F and ϕ ∈ Φ. If either
(3) f and F are subcompatible D-maps; g and G are subcompatible and FX is

closed, or
(3′) g and G are subcompatible D-maps; f and F are subcompatible and GX is

closed.
Then, f, g, F and G have a unique common fixed point t ∈ X such that

Ft = Gt = {ft} = {gt} = {t} .

Proof. Suppose that f and F are D-maps, then, there exists a sequence {xn}
in X such that fxn → t and Fxn → {t} for some t ∈ X . Since FX is closed
and FX ⊆ gX , then, there is a point u ∈ X such that gu = t. We show that
Gu = {gu} = {t}. Using inequality (2), we have

∫ F (δ(Fxn,Gu),d(fxn,gu),δ(fxn,Fxn),δ(gu,Gu),δ(fxn,Gu),δ(gu,Fxn))

0

ϕ (t) dt 6 0.

Since F is continuous, we get at infinity

∫ F (δ(gu,Gu),0,0,δ(gu,Gu),δ(gu,Gu),0)

0

ϕ (t) dt 6 0
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which implies, by using condition (Fa), δ (gu,Gu) = 0; i.e., Gu = {gu} = {t}.
Since the pair (g,G) is subcompatible, it follows that Ggu = gGu; i.e., Gt = {gt}.
If t 6= gt, using (2) we have

∫ F (δ(Fxn,Gt),d(fxn,gt),δ(fxn,Fxn),δ(gt,Gt),δ(fxn,Gt),δ(gt,Fxn))

0

ϕ (t) dt 6 0.

Taking limit as n→ ∞, we get

∫ F (d(t,gt),d(t,gt),0,0,d(t,gt),d(gt,t))

0

ϕ (t) dt 6 0,

which contradicts (F1). Hence, Gt = {gt} = {t}. Since GX ⊆ fX , there is v ∈ X
such that {t} = Gt = {fv}. If Fv 6= {t}, using (2) again, we have

∫ F (δ(Fv,Gt),d(fv,gt),δ(fv,Fv),δ(gt,Gt),δ(fv,Gt),δ(gt,Fv))

0

ϕ (t) dt

=

∫ F (δ(Fv,t),0,δ(t,Fv),0,0,δ(t,Fv))

0

ϕ (t) dt 6 0,

which implies by using condition (Fb) that δ (Fv, t) = 0, hence, Fv = {t} = {fv}.
Since F and f are subcompatible, it follows that Ffv = fFv; i.e., Ft = {ft}. If
t 6= ft, using (2) we have

∫ F (δ(Ft,Gt),d(ft,gt),δ(ft,F t),δ(gt,Gt),δ(ft,Gt),δ(gt,F t))

0

ϕ (t) dt

=

∫ F (d(ft,t),d(ft,t),0,0,d(ft,t),d(t,ft))

0

ϕ (t) dt 6 0,

which contradicts (F1). Thus, {ft} = {t} = Ft.
We get the same conclusion if we use (3′) instead of (3).
The uniqueness of the common fixed point follows easily from conditions (2)

and (F1). �

Corollary 2.2. Let f be a map from a metric space (X , d) into itself and let F be
a map from X into B(X ). If

(i) FX ⊆ fX ,
(ii) f and F are subcompatible D-maps,
(iii)

∫ F (δ(Fx,Fy),d(fx,fy),δ(fx,Fx),δ(fy,Fy),δ(fx,Fy),δ(fy,Fx))

0

ϕ (t) dt 6 0

for all x, y in X , where ϕ ∈ Φ and F is continuous and satisfies conditions (Fa)
and (F1) or (Fb) and (F1). If FX is closed, then, f and F have a unique common
fixed point in X .
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The next Theorem is a generalization of Theorem 2.1.

Theorem 2.3. Let f, g be self-maps of a metric space (X , d) and let Fn : X →
B(X ), where n = 1, 2, . . . be multivalued maps such that

(i) FnX ⊆ gX and Fn+1X ⊆ fX ,
(ii)

∫ F (δ(Fnx,Fn+1y),d(fx,gy),δ(fx,Fnx),δ(gy,Fn+1y),δ(fx,Fn+1y),δ(gy,Fnx))

0

ϕ (t) dt 6 0

for all x, y in X , where F ∈ F and ϕ ∈ Φ. If either
(iii) f and Fn are subcompatible D-maps; g and Fn+1 are subcompatible and

FnX is closed, or
(iii)′ g and Fn+1 are subcompatible D-maps; f and Fn are subcompatible and

Fn+1X is closed.
Then, f, g and Fn have a unique common fixed point t ∈ X such that

Fnt = {ft} = {gt} = {t} .

Now, let Ψ be the set of all maps ψ : R+ → R+ such that ψ is a Lebesgue-
integrable which is summable, nonnegative and satisfies

∫ ǫ

0
ψ(t)dt > 0 for each

ǫ > 0.
In [3], a common fixed point theorem for a pair of generalized contraction self-

maps and a pair of multivalued maps in a complete metric space was obtained.
Our second main subject is to complement and improve the result of [3] by relax-
ing the notion of δ-compatibility to subcompatibility, removing the assumption of
continuity imposed on at least one of the four maps and deleting some conditions
required on the functions Φ, a, b and c by using an integral type in a metric space
instead of a complete metric space.

Theorem 2.4. Let f, g be self-maps of a metric space (X , d) and let F,G be maps
from X into B(X ) satisfying the following conditions

(1′) f and g are surjective,
(2′)

∫ ̥(δ(Fx,Gy))

0

ψ(t)dt 6 a (d (fx, gy))

∫ ̥(d(fx,gy))

0

ψ(t)dt

+ b (d (fx, gy))

∫ ̥(δ(fx,Fx))+̥(δ(gy,Gy))

0

ψ(t)dt

+ c (d (fx, gy))

∫ min{̥(δ(fx,Gy)),̥(δ(gy,Fx))}

0

ψ(t)dt

for all x, y in X , where ̥ : [0,∞) → [0,∞) is an upper semi-continuous map such
that ̥(t) = 0 iff t = 0; a, b, c : [0,∞) → [0, 1) are upper semi-continuous such that
a(t) + c(t) < 1 for every t > 0 and ψ ∈ Ψ. If either

(3′) f and F are subcompatible D-maps; g and G are subcompatible, or



Common fixed point theorems for pairs of single and multivalued D-maps. . . 49

(3′′) g and G are subcompatible D-maps; f and F are subcompatible.
Then, f, g, F and G have a unique common fixed point t ∈ X such that

Ft = Gt = {ft} = {gt} = {t} .

Proof. Suppose that f and F are D-maps, then, there is a sequence {xn} in X
such that lim

n→∞
fxn = t and lim

n→∞
Fxn = {t} for some t ∈ X . By condition (1′), there

exist points u, v in X such that t = fu = gv. First, we show that Gv = {gv} = {t}.
Using inequality (2′) we get

∫ ̥(δ(Fxn,Gv))

0

ψ(t)dt

6 a (d (fxn, gv))

∫ ̥(d(fxn,gv))

0

ψ(t)dt

+ b (d (fxn, gv))

∫ ̥(δ(fxn,Fxn))+̥(δ(gv,Gv))

0

ψ(t)dt

+ c (d (fxn, gv))

∫ min{̥(δ(fxn,Gv)),̥(δ(gv,Fxn))}

0

ψ(t)dt.

Taking the limit as n→ ∞, one obtains

∫ ̥(δ(gv,Gv))

0

ψ(t)dt 6 b (0)

∫ ̥(δ(gv,Gv))

0

ψ(t)dt <

∫ ̥(δ(gv,Gv))

0

ψ(t)dt

this contradiction implies that Gv = {gv} = {t}. Since the pair (g,G) is sub-
compatible, then, Ggv = gGv; i.e., Gt = {gt}. We claim that Gt = {gt} = {t}.
Suppose not, then, by condition (2′) we have

∫ ̥(δ(Fxn,Gt))

0

ψ(t)dt 6 a (d (fxn, gt))

∫ ̥(d(fxn,gt))

0

ψ(t)dt

+ b (d (fxn, gt))

∫ ̥(δ(fxn,Fxn))+̥(δ(gt,Gt))

0

ψ(t)dt

+ c (d (fxn, gt))

∫ min{̥(δ(fxn,Gt)),̥(δ(gt,Fxn))}

0

ψ(t)dt.

When n→ ∞ we obtain
∫ ̥(δ(t,Gt))

0

ψ(t)dt =

∫ ̥(d(t,gt))

0

ψ(t)dt

6 [a (d (t, gt)) + c (d (t, gt))]

∫ ̥(d(t,gt))

0

ψ(t)dt

<

∫ ̥(d(t,gt))

0

ψ(t)dt
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which is a contradiction. Hence, {gt} = {t} = Gt. Next, we claim that Fu =
{fu} = {t}. If not, then, by (2′) we get

∫ ̥(δ(Fu,fu))

0

ψ(t)dt =

∫ ̥(δ(Fu,Gt))

0

ψ(t)dt

6 a (d (fu, gt))

∫ ̥(d(fu,gt))

0

ψ(t)dt

+ b (d (fu, gt))

∫ ̥(δ(fu,Fu))+̥(δ(gt,Gt))

0

ψ(t)dt

+ c (d (fu, gt))

∫ min{̥(δ(fu,Gt)),̥(δ(gt,Fu))}

0

ψ(t)dt

= b (0)

∫ ̥(δ(fu,Fu))

0

ψ(t)dt <

∫ ̥(δ(fu,Fu))

0

ψ(t)dt

which is a contradiction. Thus, Fu = {fu} = {t}. Since F and f are subcompati-
ble, then, Ffu = fFu; i.e., Ft = {ft}. Suppose that ft 6= t. Then, the use of (2′)
gives

∫ ̥(d(ft,t))

0

ψ(t)dt =

∫ ̥(δ(Ft,Gt))

0

ψ(t)dt

6 a (d (ft, gt))

∫ ̥(d(ft,gt))

0

ψ(t)dt

+ b (d (ft, gt))

∫ ̥(δ(ft,F t))+̥(δ(gt,Gt))

0

ψ(t)dt

+ c (d (ft, gt))

∫ min{̥(δ(ft,Gt)),̥(δ(gt,F t))}

0

ψ(t)dt

= [a (d (ft, t)) + c (d (ft, t))]

∫ ̥(d(ft,t))

0

ψ(t)dt

<

∫ ̥(d(ft,t))

0

ψ(t)dt

this contradiction implies that ft = t and hence Ft = {ft} = {t}. Therefore t is a
common fixed point of both f, g, F and G.

The uniqueness of the common fixed point follows easily from condition (2′).
We get the same conclusion if we consider (3′′) in lieu of (3′). �

Remark 2.5. Theorem 3.1 of [3] becomes a special case of Theorem 2.4 with
ψ(x) = 1.

If we put f = g in Theorem 2.4, we get the next corollary.

Corollary 2.6. Let (X , d) be a metric space and let f : X → X ; F,G : X → B(X )
be maps. Suppose that
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(i) f is surjective,
(ii)

∫ ̥(δ(Fx,Gy))

0

ψ(t)dt 6 a (d (fx, fy))

∫ ̥(d(fx,fy))

0

ψ(t)dt

+ b (d (fx, fy))

∫ ̥(δ(fx,Fx))+̥(δ(fy,Gy))

0

ψ(t)dt

+ c (d (fx, fy))

∫ min{̥(δ(fx,Gy)),̥(δ(fy,Fx))}

0

ψ(t)dt

for all x, y in X , where ̥, ψ, a, b, c are as in Theorem 2.4. If either
(iii) f and F are subcompatible D-maps; f and G are subcompatible, or
(iii)′ f and G are subcompatible D-maps; f and F are subcompatible.
Then, f, F and G have a unique common fixed point t ∈ X such that

Ft = Gt = {ft} = {t} .

For a single map f : X → X (resp. a multivalued map F : X → B(X )), Ff

(resp. FF ) will denote the set of fixed point of f (resp. F ).

Theorem 2.7. Let F,G : X → B(X ) be multivalued maps and let f, g : X → X be
single maps on the metric space X . If inequality (2′) holds for all x, y in X , then,

(Ff ∩ Fg) ∩ FF = (Ff ∩ Fg) ∩ FG.

Proof. We can check the above equality by using inequality (2′). �

Theorems 2.4 and 2.7 imply the next one.

Theorem 2.8. Let f, g be self-maps of a metric space (X , d) and let Fn, where
n = 1, 2, . . . be maps from X into B(X ) such that

(i) f and g are surjective,
(ii)

∫ ̥(δ(Fnx,Fn+1y))

0

ψ(t)dt

6 a (d (fx, gy))

∫ ̥(d(fx,gy))

0

ψ(t)dt

+ b (d (fx, gy))

∫ ̥(δ(fx,Fnx))+̥(δ(gy,Fn+1y))

0

ψ(t)dt

+ c (d (fx, gy))

∫ min{̥(δ(fx,Fn+1y)),̥(δ(gy,Fnx))}

0

ψ(t)dt

for all x, y in X , where ̥, ψ, a, b, c are as in Theorem 2.4. If either
(iii) f and F1 are subcompatible D-maps; g and F2 are subcompatible, or
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(iii)′ g and F2 are subcompatible D-maps; f and F1 are subcompatible.
Then, f, g and Fn have a unique common fixed point t ∈ X such that

Fnt = {ft} = {gt} = {t} for n = 1, 2, . . . .

Let Ω be the family of all maps ω : R+ → R+ such that ω is upper semi-
continuous and ω(t) < t for each t > 0.

In [1], Djoudi and Aliouche proved a common fixed point theorem of Greguš
type for four maps satisfying a contractive condition of integral type in a metric
space using the concept of weak compatibility. Our aim henceforth is to extend
this result to multivalued maps by using the concept of D-maps.

Theorem 2.9. Let (X , d) be a metric space and let f, g : X → X ; Fk : X → B(X )
be single and multivalued maps, respectively. Suppose that

(i) FkX ⊆ gX and Fk+1X ⊆ fX ,
(ii)

(
∫ δ(Fkx,Fk+1y)

0

ψ(t)dt

)p

6 ω

(

a

(
∫ d(fx,gy)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(
∫ δ(fx,Fkx)

0

ψ(t)dt

)p

,

β

(
∫ δ(gy,Fk+1y)

0

ψ(t)dt

)p

,

(
∫ δ(fx,Fkx)

0

ψ(t)dt

) p
2
(
∫ δ(gy,Fkx)

0

ψ(t)dt

) p
2

,

(
∫ δ(gy,Fkx)

0

ψ(t)dt

) p
2
(
∫ δ(fx,Fk+1y)

0

ψ(t)dt

) p
2

,

1

2

((
∫ δ(fx,Fkx)

0

ψ(t)dt

)p

+

(
∫ δ(gy,Fk+1y)

0

ψ(t)dt

)p)})

for all x, y in X , where k ∈ N∗ = {1, 2, . . .}, ω ∈ Ω, ψ ∈ Ψ, 0 < a < 1, 0 < α, β 6 1
and p is an integer such that p > 1. If either

(iii) f and Fk are subcompatible D-maps; g and Fk+1 are subcompatible and
FkX is closed, or

(iii)′ g and Fk+1 are subcompatible D-maps; f and Fk are subcompatible and
Fk+1X is closed.

Then, f, g and Fk have a unique common fixed point t ∈ X such that

Fkt = {ft} = {gt} = {t} .

Proof. Suppose that f and Fk are D-maps, then, there exists a sequence {xn}
in X such that lim

n→∞
fxn = t and lim

n→∞
Fkxn = {t} for some t ∈ X . Since FkX is

closed and FkX ⊆ gX , then, there is u ∈ X such that gu = t. If Fk+1u 6= {gu},
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using inequality (ii) we get
(
∫ δ(Fkxn,Fk+1u)

0

ψ(t)dt

)p

6 ω

(

a

(
∫ d(fxn,gu)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(
∫ δ(fxn,Fkxn)

0

ψ(t)dt

)p

, β

(
∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p

,

(
∫ δ(fxn,Fkxn)

0

ψ(t)dt

) p
2
(
∫ δ(gu,Fkxn)

0

ψ(t)dt

) p
2

,

(
∫ δ(gu,Fkxn)

0

ψ(t)dt

) p
2
(
∫ δ(fxn,Fk+1u)

0

ψ(t)dt

) p
2

,

1

2

((
∫ δ(fxn,Fkxn)

0

ψ(t)dt

)p

+

(
∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p)})

.

Letting n→ ∞ we obtain
(
∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p

6 ω

(

(1 − a)max

{

β,
1

2

}(∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p)

< (1 − a)max

{

β,
1

2

}(∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p

<

(
∫ δ(gu,Fk+1u)

0

ψ(t)dt

)p

which is a contradiction. Then Fk+1u = {gu} = {t}. Since the pair (g, Fk+1) is
subcompatible, we have Fk+1gu = gFk+1u; i.e., Fk+1t = {gt}. If t 6= gt, using
inequality (ii) we obtain

(
∫ δ(Fkxn,Fk+1t)

0

ψ(t)dt

)p

6 ω

(

a

(
∫ d(fxn,gt)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(
∫ δ(fxn,Fkxn)

0

ψ(t)dt

)p

, β

(
∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p

,

(
∫ δ(fxn,Fkxn)

0

ψ(t)dt

) p
2
(
∫ δ(gt,Fkxn)

0

ψ(t)dt

) p
2

,
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(
∫ δ(gt,Fkxn)

0

ψ(t)dt

) p
2
(
∫ δ(fxn,Fk+1t)

0

ψ(t)dt

) p
2

,

1

2

((
∫ δ(fxn,Fkxn)

0

ψ(t)dt

)p

+

(
∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p)})

.

At infinity we get
(
∫ d(t,gt)

0

ψ(t)dt

)p

6 ω

((
∫ d(t,gt)

0

ψ(t)dt

)p)

<

(
∫ d(t,gt)

0

ψ(t)dt

)p

which is a contradiction. Therefore Fk+1t = {gt} = {t}. Since Fk+1X ⊆ fX , there
exists v ∈ X such that Fk+1t = {t} = {fv}. We claim that Fkv = {fv}, suppose
not, then by condition (ii) we have

(
∫ δ(Fkv,Fk+1t)

0

ψ(t)dt

)p

6 ω

(

a

(
∫ d(fv,gt)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(
∫ δ(fv,Fkv)

0

ψ(t)dt

)p

,

β

(
∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p

,

(
∫ δ(fv,Fkv)

0

ψ(t)dt

) p
2
(
∫ δ(gt,Fkv)

0

ψ(t)dt

) p
2

,

(
∫ δ(gt,Fkv)

0

ψ(t)dt

) p
2
(
∫ δ(fv,Fk+1t)

0

ψ(t)dt

) p
2

,

1

2

((
∫ δ(fv,Fkv)

0

ψ(t)dt

)p

+

(
∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p)})

,

that is,
(
∫ δ(Fkv,fv)

0

ψ(t)dt

)p

6 ω

(

(1 − a)

(
∫ δ(Fkv,fv)

0

ψ(t)dt

)p)

< (1 − a)

(
∫ δ(Fkv,fv)

0

ψ(t)dt

)p

<

(
∫ δ(Fkv,fv)

0

ψ(t)dt

)p

which is a contradiction. Hence Fkv = {fv} = {t}. Since the pair (f, Fk) is
subcompatible, then, Fkfv = fFkv; i.e., Fkt = {ft}. The use of (ii) gives

(
∫ δ(Fkt,Fk+1t)

0

ψ(t)dt

)p
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6 ω

(

a

(
∫ d(ft,gt)

0

ψ(t)dt

)p

+ (1 − a)max

{

α

(
∫ δ(ft,Fkt)

0

ψ(t)dt

)p

,

β

(
∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p

,

(
∫ δ(ft,Fkt)

0

ψ(t)dt

) p
2
(
∫ δ(gt,Fkt)

0

ψ(t)dt

) p
2

,

(
∫ δ(gt,Fkt)

0

ψ(t)dt

) p
2
(
∫ δ(ft,Fk+1t)

0

ψ(t)dt

) p
2

,

1

2

((
∫ δ(ft,Fkt)

0

ψ(t)dt

)p

+

(
∫ δ(gt,Fk+1t)

0

ψ(t)dt

)p)})

,

i.e.,
(
∫ d(ft,t)

0

ψ(t)dt

)p

6 ω

((
∫ d(ft,t)

0

ψ(t)dt

)p)

<

(
∫ d(ft,t)

0

ψ(t)dt

)p

this contradiction implies that {ft} = {t} = Fkt. Thus, t is a common fixed point
of f, g and Fk.

The uniqueness of the common fixed point follows from inequality (ii).
If one uses condition (iii)′ instead of (iii), one gets the same conclusion. �

Theorem 2.10. Let (X , d) be a metric space and let f, g : X → X ; Fn : X → B(X )
be single and multivalued maps such that

(i) FnX ⊆ gX and Fn+1X ⊆ fX ,
(ii)

(
∫ δ(Fnx,Fn+1y)

0

ψ(t)dt

)p

6 ω

(

a

(
∫ d(fx,gy)

0

ψ(t)dt

)p

+ (1 − a)max

{
∫ δ(fx,Fnx)

0

ψ(t)dt,

∫ δ(gy,Fn+1y)

0

ψ(t)dt,

(
∫ δ(fx,Fnx)

0

ψ(t)dt

) 1
2
(
∫ δ(gy,Fnx)

0

ψ(t)dt

) 1
2

,

(
∫ δ(gy,Fnx)

0

ψ(t)dt

) 1
2
(
∫ δ(fx,Fn+1y)

0

ψ(t)dt

) 1
2







p



for all x, y in X , where ω ∈ Ω, ψ ∈ Ψ, 0 < a < 1 and p is an integer such that
p > 1. If either

(iii) f and Fn are subcompatible D-maps; g and Fn+1 are subcompatible and
FnX is closed, or

(iii)′ g and Fn+1 are subcompatible D-maps; f and Fn are subcompatible and
Fn+1X is closed.
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Then, f, g and Fn have a unique common fixed point t ∈ X such that

Fnt = {ft} = {gt} = {t} for n = 1, 2, . . . .

Proof. It is similar to the proof of Theorem 2.9. �

Now, we prove a unique common fixed point theorem of Greguš type by using a
strict contractive condition of integral type for two pairs of single and multivalued
maps in a metric space.

Theorem 2.11. Let f and g be self-maps of a metric space (X , d) and let {Fn},
n = 1, 2, . . . be multivalued maps from X into B(X ) such that

(1′′) f and g are surjective,
(2′′)

∫ δ(F1x,Fky)

0

ψ(t)dt

< α

∫ d(fx,gy)

0

ψ(t)dt+ (1 − α)max

{

a

∫ δ(fx,F1x)

0

ψ(t)dt,

b

∫ δ(gy,Fky)

0

ψ(t)dt, c

(
∫ δ(fx,F1x)

0

ψ(t)dt

) 1
2
(
∫ δ(gy,F1x)

0

ψ(t)dt

) 1
2

,

d

(
∫ δ(gy,F1x)

0

ψ(t)dt

) 1
2
(
∫ δ(fx,Fky)

0

ψ(t)dt

) 1
2







for all x, y in X and some k > 1 for which the right hand side is positive, where
ψ ∈ Ψ, 0 < α, a, b, c, d < 1 and α+ d(1 − α) < 1. If either

(3′′) f and F1 are subcompatible D-maps; g and Fk are subcompatible, or
(3′′′) g and Fk are subcompatible D-maps; f and F1 are subcompatible.
Then, f, g and {Fn} have a unique common fixed point t ∈ X such that

Fnt = {ft} = {gt} = {t} , for n = 1, 2, . . . .

Proof. Suppose that condition (3′′) holds, then, there is a sequence {xn} in X
such that fxn → t and F1xn → {t} as n → ∞ for some t ∈ X . By condition
(1′′), there are two elements u and v in X such that t = fu = gv. We show that
{t} = Fkv. Indeed, using inequality (2′′) we get

∫ δ(F1xn,Fkv)

0

ψ(t)dt

< α

∫ d(fxn,gv)

0

ψ(t)dt+ (1 − α)max

{

a

∫ δ(fxn,F1xn)

0

ψ(t)dt,

b

∫ δ(gv,Fkv)

0

ψ(t)dt, c

(
∫ δ(fxn,F1xn)

0

ψ(t)dt

) 1
2
(
∫ δ(gv,F1xn)

0

ψ(t)dt

) 1
2

,
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d

(
∫ δ(gv,F1xn)

0

ψ(t)dt

) 1
2
(
∫ δ(fxn,Fkv)

0

ψ(t)dt

) 1
2






.

Taking limit as n→ ∞, we obtain

∫ δ(t,Fkv)

0

ψ(t)dt 6 b (1 − α)

∫ δ(t,Fkv)

0

ψ(t)dt <

∫ δ(t,Fkv)

0

ψ(t)dt

thus, we have Fkv = {t} = {gv} and since g and Fk are subcompatible, we have
Fkgv = gFkv; that is, Fkt = {gt}. Again, by (2′′) we obtain

∫ δ(F1xn,Fkt)

0

ψ(t)dt

< α

∫ d(fxn,gt)

0

ψ(t)dt+ (1 − α)max

{

a

∫ δ(fxn,F1xn)

0

ψ(t)dt,

b

∫ δ(gt,Fkt)

0

ψ(t)dt, c

(
∫ δ(fxn,F1xn)

0

ψ(t)dt

) 1
2
(
∫ δ(gt,F1xn)

0

ψ(t)dt

) 1
2

,

d

(
∫ δ(gt,F1xn)

0

ψ(t)dt

) 1
2
(
∫ δ(fxn,Fkt)

0

ψ(t)dt

) 1
2






.

When n→ ∞, we get

∫ d(t,gt)

0

ψ(t)dt 6 [α+ d (1 − α)]

∫ d(t,gt)

0

ψ(t)dt <

∫ d(t,gt)

0

ψ(t)dt

this contradiction implies that {t} = {gt} = Fkt = {fu}. We claim that F1u = {t}.
By condition (2′′) we have

∫ δ(F1u,t)

0

ψ(t)dt =

∫ δ(F1u,Fkt)

0

ψ(t)dt

< α

∫ d(fu,gt)

0

ψ(t)dt+ (1 − α) max

{

a

∫ δ(fu,F1u)

0

ψ(t)dt,

b

∫ δ(gt,Fkt)

0

ψ(t)dt, c

(
∫ δ(fu,F1u)

0

ψ(t)dt

) 1
2
(
∫ δ(gt,F1u)

0

ψ(t)dt

) 1
2

,

d

(
∫ δ(gt,F1u)

0

ψ(t)dt

) 1
2
(
∫ δ(fu,Fkt)

0

ψ(t)dt

) 1
2







= (1 − α)max {a, c}
∫ δ(F1u,t)

0

ψ(t)dt <

∫ δ(F1u,t)

0

ψ(t)dt
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this contradiction demands that F1u = {t} = {fu}. Since f and F1 are subcom-
patible, then, F1fu = fF1u; that is, F1t = {ft}. Moreover, by (2′′) one may
get

∫ d(ft,t)

0

ψ(t)dt =

∫ δ(F1t,Fkt)

0

ψ(t)dt

< α

∫ d(ft,gt)

0

ψ(t)dt+ (1 − α) max

{

a

∫ δ(ft,F1t)

0

ψ(t)dt,

b

∫ δ(gt,Fkt)

0

ψ(t)dt, c

(
∫ δ(ft,F1t)

0

ψ(t)dt

) 1
2
(
∫ δ(gt,F1t)

0

ψ(t)dt

) 1
2

,

d

(
∫ δ(gt,F1t)

0

ψ(t)dt

) 1
2
(
∫ δ(ft,Fkt)

0

ψ(t)dt

) 1
2







= [α+ d (1 − α)]

∫ d(ft,t)

0

ψ(t)dt <

∫ d(ft,t)

0

ψ(t)dt

which is a contradiction. Thus, {ft} = {t} = F1t. Therefore, F1t = Fkt = {ft} =
{gt} = {t}.

Uniqueness follows easily from condition (2′′). The proof is thus completed. �

Important remark. Every contractive or strict contractive condition of integral
type automatically includes a corresponding contractive or strict contractive con-
dition, not involving integrals, by setting ϕ(t) = 1 (resp. ψ(t) = 1) over R+. So,
our results extend, generalize and complement several various results existing in
the literature.
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Abstract

In this paper we prove several results on connection between continued
fractions and rational approximations of the form |α − a/b| < k/b2, for a
positive integer k.
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1. Introduction

The classical Legendre’s theorem in Diophantine approximations states that if
a real number α and a rational number a

b (we will always assume that b > 1),
satisfy the inequality

∣
∣
∣α− a

b

∣
∣
∣ <

1

2b2
, (1.1)

then a
b is a convergent of the continued fraction expansion of α = [a0; a1, . . .]. This

result has been extended by Fatou [3] (see also [5, p.16]), who showed that if

|α− a

b
| < 1

b2
,

then a
b = pm

qm
or pm+1±pm

qm+1±qm
, where pm

qm
denotes the m-th convergent of α.

In 1981, Worley [12] generalized these results to the inequality
∣
∣α− a

b

∣
∣ < k

b2 ,
where k is an arbitrary positive real number. Worley’s result was slightly improved
in [1].

∗The first author was supported by the Ministry of Science, Education and Sports, Republic
of Croatia, grant 037-0372781-2821.
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Theorem 1.1 (Worley [12], Dujella [1]). Let α be a real number and let a and b
be coprime nonzero integers, satisfying the inequality

∣
∣
∣α− a

b

∣
∣
∣ <

k

b2
, (1.2)

where k is a positive real number. Then (a, b) = (rpm+1 ± spm, rqm+1 ± sqm), for
some m > −1 and nonnegative integers r and s such that rs < 2k.

The original result of Worley [12, Theorem 1] contains three types of solutions
to the inequality (1.2). Two types correspond to two possible choices for signs +
and − in (rpm+1 ± spm, rqm+1 ± sqm), while [1, Theorem 1] shows that the third
type (corresponding to the case am+2 = 1) can be omitted.

In Section 3 we will show that Theorem 1.1 is sharp, in the sense that the
condition rs < 2k cannot be replaced by rs < (2 − ε)k for any ε > 0. However,
it appears that the coefficients r and s show different behavior. So, improvements
of Theorem 1.1 are possible if we allow nonsymmetric conditions on r and s. In-
deed, already the paper of Worley [12] contains an important contribution in that
direction.

Theorem 1.2 (Worley [12], Theorem 2). If α is an irrational number, k > 1
2 and

a
b is a rational approximation to α (in reduced form) for which the inequality (1.2)
holds, then either a

b is a convergent pm

qm
to α or a

b has one of the following forms:

(i) a
b = rpm+1+spm

rqm+1+sqm

r > s and rs < 2k, or

r 6 s and rs < k + r2

am+2
,

(ii) a
b = spm+1−tpm

sqm+1−tqm

s < t and st < 2k, or
s > t and st

(
1 − t

2s

)
< k,

where r, s and t are positive integers.

Since the fraction a/b is in reduced form, it is clear that in the statements of
Theorems 1.1 and 1.2 we may assume that gcd(r, s) = 1 and gcd(s, t) = 1.

Worley [12, Corollary, p.206] also gave the explicit version of his result for
k = 2: |α − a

b | < 2
b2 implies a

b = pm

qm
, pm+1±pm

qm+1±qm
, 2pm+1±pm

2qm+1±qm
, 3pm+1+pm

3qm+1+qm
, pm+1±2pm

qm+1±2qm

or pm+1−3pm

qm+1−3qm
. This result for k = 2 has been applied for solving some Diophantine

equations. In [7], it was applied to the problem of finding positive integers a and
b such that (a2 + b2)/(ab + 1) is an integer, and in [2] it was used for solving the
family of Thue inequalities

|x4 − 4cx3y + (6c+ 2)x2y2 + 4cxy2 + y4| 6 6c+ 4.

On the other hand, Theorem 1.1 has applications in cryptography, too. Namely, in
[1], a modification of Verheul and van Tilborg variant of Wiener’s attack ([10, 11])
on RSA cryptosystem with small secret exponent has been described, which is
based on Theorem 1.1.
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We will extend Worley’s work and give explicit and sharp versions of Theorems
1.1 and 1.2 for k = 3, 4, 5, . . . , 12. We will list the pairs (r, s) which appear in the
expression of solutions of (1.2) in the form (a, b) = (rpm+1 ± spm, rqm+1 ± sqm),
and we will show by explicit examples that all pairs from the list are indeed neces-
sary. We hope that our results will also find applications on Diophantine problems,
and in Section 4 we will present such an application. In such applications, it is
especially of interest to have smallest possible list of pairs (r, s). It is certainly pos-
sible to extend our result for k > 12. However, already our results make it possible
to reveal certain patterns, and they also suffice for our Diophantine applications.

2. Explicit versions of Worley’s theorem

We start by few details from the proof of Theorem 1.1 in [1], which will be
useful in our future arguments. In particular, we will explain how the integer m
appearing in the statement of Theorem 1.1 can be found. We assume that α < a

b ,
since the other case is completely analogous. Let m be the largest odd integer
satisfying

α <
a

b
6
pm

qm
.

If a
b >

p1

q1
, we take m = −1, following the convention that p−1 = 1, q−1 = 0. Since

|pm+1qm − pmqm+1| = 1, the numbers r and s defined by

a = rpm+1 + spm,

b = rqm+1 + sqm

are integers, and since pm+1

qm+1
< a

b 6
pm

qm
, we have that r > 0 and s > 0. From the

maximality of m, we find that

sam+2 − r

bqm+2
=

∣
∣
∣
∣

pm+2

qm+2
− a

b

∣
∣
∣
∣
<
∣
∣
∣α− a

b

∣
∣
∣ <

k

b2
. (2.1)

From (2.1) we immediately have

am+2 >
r

s
, (2.2)

and we can derive the inequality

r2 − sram+2 + kam+2 > 0 (2.3)

(see [1, proof of Theorem 1] for details, and note also that (2.3) is exactly the
inequality from Theorem 1.2 (i) - the second case).

Let us define a positive integer t by t = sam+2 − r. Then we have

a = rpm+1 + spm = spm+2 − tpm+1,

b = rqm+1 + sqm = sqm+2 − tqm+1,
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and s and t satisfy analogs of (2.2) and (2.3):

am+2 >
t

s
, (2.4)

t2 − stam+2 + kam+2 > 0. (2.5)

If r > t, i.e. rs > st, then we will represent a and b in terms of s and t (which
corresponds to − sign in Theorem 1.1).

Let us consider now the case k = 3. Hence, we are considering the inequality

|α− a

b
| < 3

b2
. (2.6)

By Theorem 1.1, we have that (a, b) = (rpm+1 + spm, rqm+1 + sqm) or (spm+2 −
tpm+1, sqm+2 − tqm+1), where rs < 6, st < 6, gcd(r, s) = 1 and gcd(s, t) = 1.
However, the inequalities (2.3) and (2.5) for r = 1, resp. t = 1, show that the pairs
(r, s) = (1, 4), (1, 5) and (s, t) = (4, 1), (5, 1) can be omitted. Therefore, we proved

Proposition 2.1. If a real number α and a rational number a
b satisfy the inequality

(2.6), then
a

b
=
rpm+1 + spm

rqm+1 + sqm
, where

(r, s) ∈ R3 = {(0, 1), (1, 1), (1, 2), (1, 3), (2, 1), (3, 1), (4, 1), (5, 1)},

or
a

b
=
spm+2 − tpm+1

sqm+2 − tqm+1
, where

(s, t) ∈ T3 = {(1, 1), (2, 1), (3, 1), (1, 2), (1, 3), (1, 4), (1, 5)}
(for an integer m > −1).

Our next aim is to show that Proposition 2.1 is sharp, i.e. that if we omit
any of the pairs (r, s) or (s, t) appearing in Proposition 2.1, the statement of the
proposition will no longer be valid. More precisely, if we omit a pair (r′, s′) ∈ R3,
then there exist a real number α and a rational number a

b satisfying (2.6), but such
that a

b cannot be represented in the form a
b = rpm+1+spm

rqm+1+sqm
nor a

b = spm+2−tpm+1

sqm+2−tqm+1
,

where m > −1, (r, s) ∈ R3 \ {(r′, s′)}, (s, t) ∈ T3 (and similarly for an omitted pair
(s′, t′) ∈ T3).

We will show that by giving explicit examples for each pair. Although we have
found many such examples of different form, in the next table we give numbers α
of the form

√
d, where d is a non-square positive integer.

α a b m r s t√
10 3 1 0 0 1 6√
17 37 9 0 1 1 7√
2 5 4 0 1 2 3√
8 23 8 1 1 3 2√
17 70 17 0 2 1 6√
26 158 31 0 3 1 7√
26 209 41 0 4 1 6√
37 371 61 0 5 1 7

α a b m r s t√
17 235 57 0 7 1 1√
2 11 8 0 3 2 1√
8 37 13 1 2 3 1√
17 202 49 0 6 1 2√
26 362 71 0 7 1 3√
26 311 61 0 6 1 4√
37 517 85 0 7 1 5
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For example, consider α =
√

8 = [2, 1, 4]. Its rational approximation 23
8 (the

forth row of the table) satisfies
∣
∣
√

8 − 23
8

∣
∣ ≈ 0.046572875< 3

82 . The convergents of√
8 are 2

1 , 3
1 , 14

5 , 17
6 , 82

29 , 99
35 , 478

169 , . . . . The only representation of the fraction 23
8

in the form rpm+1+spm

rqm+1+sqm
, (r, s) ∈ R3 or spm+2−tpm+1

sqm+2−tqm+1
, (s, t) ∈ T3 is 23

8 = 1·14+3·3
1·5+3·1 =

1·p2+3·p1

1·q2+3·q1
, which shows that the pair (1, 3) cannot be omitted from the set R3.

Proposition 2.2. Let k ∈ {4, 5, 6, 7, 8, 9, 10, 11, 12}. If a real number α and a ra-

tional number a
b satisfy the inequality (1.2), then

a

b
=
rpm+1 + spm

rqm+1 + sqm
, where (r, s) ∈

Rk = Rk−1 ∪ R′
k, or

a

b
=
spm+2 − tpm+1

sqm+2 − tqm+1
, where (s, t) ∈ Tk = Tk−1 ∪ T ′

k (for an

integer m > −1), where the sets R′
k and T ′

k are given in the following table. More-
over, if any of the elements in sets Rk or Tk is omitted, the statement will no longer
be valid.

k R′

k T ′

k

4 {(1, 4), (3, 2), (6, 1), (7, 1)} {(4, 1), (2, 3), (1, 6), (1, 7)}
5 {(1, 5), (2, 3), (8, 1), (9, 1)} {(5, 1), (3, 2), (1, 8), (1, 9)}
6 {(1, 6), (5, 2), (10, 1), (11, 1)} {(6, 1), (2, 5), (1, 10), (1, 11)}
7 {(1, 7), (2, 5), (4, 3), (12, 1), (13, 1)} {(7, 1), (5, 2), (3, 4), (1, 12), (1, 13)}
8 {(1, 8), (3, 4), (7, 2), (14, 1), (15, 1)} {(8, 1), (4, 3), (2, 7), (1, 14), (1, 15)}
9 {(1, 9), (5, 3), (16, 1), (17, 1)} {(9, 1), (3, 5), (1, 16), (1, 17)}
10 {(1, 10), (9, 2), (18, 1), (19, 1)} {(10, 1), (2, 9), (1, 18), (1, 19)}
11 {(1, 11), (2, 7), (3, 5), (20, 1), (21, 1)} {(11, 1), (7, 2), (5, 3), (1, 20), (1, 21)}
12 {(1, 12), (5, 4), (7, 3), {(12, 1), (4, 5), (3, 7),

(11, 2), (22, 1), (23, 1)} (2, 11), (1, 22), (1, 23)}

Proof. By Theorem 1.1, we have to consider only pairs of nonnegative integers
(r, s) and (s, t) satisfying rs < 2k, st < 2k, gcd(r, s) = 1 and gcd(s, t) = 1.
Furthermore, as in the case k = 3, it follows directly from the inequalities (2.3)
and (2.5) for r = 1, resp. t = 1, that the pairs (r, s) = (1, s) and (s, t) = (s, 1)
with s > k + 1 can be omitted. Similarly, for r = 2 or 3, resp. t = 2 or 3, we can
exclude the pairs (r, s) = (2, s) and (s, t) = (s, 2) with s > k

2 + 2, and the pairs
(r, s) = (3, s) and (s, t) = (s, 3) with s > k

3 + 3.
Now we show that all remaining possible pairs which are not listed in the

statement of Proposition 2.2 can be replaced with other pairs with smaller products
rs, resp. st. We give details only for pairs (r, s), since the proof for pairs (s, t) is
completely analogous (using the inequalities (2.4) and (2.5), instead of (2.2) and
(2.3)).

Consider the case k = 4 and (r, s) = (2, 3). By (2.3), we obtain am+2 < 2.
Thus, the pair (r, s) = (2, 3) can appear only for am+2 = 1. However, in that case
we have t = sam+2 − r = 1, and therefore the (r, s) = (2, 3) can be replaced by the
pair (s, t) = (3, 1).

Analogously we can show that for k = 7 the pair (r, s) = (3, 4) can be replaced
by (s, t) = (4, 1), for k = 8, 9, 10 the pair (r, s) = (3, 5) can be replaced by (s, t) =
(5, 2), while for k = 11, 12 the pair (r, s) = (4, 5) can be replaced by (s, t) = (5, 1).
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We have only three remaining pairs to consider: the pair (r, s) = (5, 3) for k = 8
and the pairs (r, s) = (5, 4) and (r, s) = (7, 3) for k = 11. For (r, s) = (5, 3) and
k = 8, from (2.2) and (2.3) we obtain 5

3 < am+2 <
25
7 , and therefore we have two

possibilities: am+2 = 2 or am+2 = 3. If am+2 = 2, we can replace (r, s) = (5, 3)
by (s, t) = (3, 1), while if am+2 = 3, we can replace it by (s, t) = (3, 4). Similar
approach works for two pairs with k = 11. For (r, s) = (5, 4), from (2.2) and (2.3)
we obtain 5

4 < am+2 <
25
9 , which implies am+2 = 2. Then we have t = 3 and the

pair (r, s) = (5, 4) can be replaced by the pair (s, t) = (4, 3). For (r, s) = (7, 3)
we obtain 7

3 < am+2 <
49
10 , which yields am+2 = 3 or am+2 = 4. If am+2 = 3, we

can replace (r, s) = (7, 3) by (s, t) = (3, 2), while if am+2 = 4, we can replace it by
(s, t) = (3, 5).

It remains to show that all pairs listed in the statement of the proposition are
indeed necessary (they cannot be omitted). This is shown by the examples from
the following tables:

k = 4

α a b m r s t
√

35 89 15 1 1 4 3
√

39 968 155 1 3 2 5
√

50 601 85 0 6 1 8
√

65 911 113 0 7 1 9
√

35 219 37 1 3 4 1
√

39 1580 253 1 5 2 3
√

50 799 113 0 8 1 6
√

65 1169 145 0 9 1 7

k = 5

α a b m r s t
√

80 197 22 1 1 5 4
√

12 111 32 1 2 3 4
√

82 1313 145 0 8 1 10
√

101 1819 181 0 9 1 11
√

80 653 73 1 4 5 1
√

12 201 58 1 4 3 2
√

82 1639 181 0 10 1 8
√

101 2221 221 0 11 1 9

k = 6

α a b m r s t
√

194 6421 461 3 1 6 5
√

84 5105 557 1 5 2 7
√

122 2441 221 0 10 1 12
√

145 3191 265 0 11 1 13
√

194 989 71 1 5 6 1
√

84 7103 775 1 7 2 5
√

122 2927 265 0 12 1 10
√

145 3769 313 0 13 1 11

k = 7

α a b m r s t
√

360 835 44 1 1 7 6
√

48 215 31 1 2 5 3
√

87 2136 229 1 4 3 5
√

170 4081 313 0 12 1 14
√

197 5123 365 0 13 1 15
√

360 4345 229 1 6 7 1
√

48 305 44 1 3 5 2
√

87 2649 284 1 5 3 4
√

170 4759 365 0 14 1 12
√

197 5909 421 0 15 1 13

k = 8

α a b m r s t
√

674 39799 1533 3 1 8 7
√

90 1129 119 1 3 4 5
√

147 16574 1367 1 7 2 9
√

226 6329 421 0 14 1 16
√

257 7711 481 0 15 1 17
√

674 4751 183 1 7 8 1
√

90 1831 193 1 5 4 3
√

147 21254 1753 1 9 2 7
√

226 7231 481 0 16 1 14
√

257 8737 545 0 17 1 15

k = 9

α a b m r s t
√

1088 2441 74 1 1 9 8
√

105 4273 417 1 5 3 7
√

290 9281 545 0 16 1 18
√

325 11051 613 0 17 1 19
√

1088 17449 529 1 8 9 1
√

105 5933 579 1 7 3 5
√

290 10439 613 0 18 1 16
√

325 12349 685 0 19 1 17
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k = 10

α a b m r s t
√

1762 163917 3905 3 1 10 9
√

228 41207 2729 1 9 2 11
√

362 13033 685 0 18 1 20
√

401 15239 761 0 19 1 21
√

1762 15909 379 1 9 10 1
√

228 50297 3331 1 11 2 9
√

362 14479 761 0 20 1 18
√

401 16841 841 0 21 1 19

k = 11

α a b m r s t
√

2600 5711 112 1 1 11 10
√

224 973 65 1 2 7 5
√

240 2990 193 1 3 5 7
√

442 17681 841 0 20 1 22
√

485 20371 925 0 21 1 23
√

2600 52061 1021 1 10 11 1
√

224 2275 152 1 5 7 2
√

240 6770 437 1 7 5 3
√

442 19447 925 0 22 1 20
√

485 22309 1013 0 23 1 21

k = 12

α a b m r s t
√

3842 518743 8369 3 1 12 11
√

235 7159 467 1 5 4 7
√

27 1933 372 1 7 3 8
√

327 86564 4787 1 11 2 13
√

530 23321 1013 0 22 1 24
√

577 26543 1105 0 23 1 25
√

3842 42335 683 1 11 12 1
√

235 9949 649 1 7 4 5
√

27 2198 423 1 8 3 7
√

327 102224 5653 1 13 2 11
√

530 25439 1105 0 24 1 22
√

577 28849 1201 0 25 1 23

For example, take the first row for k = 12, i.e. α =
√

3842 = [61, 1, 60, 1, 122]
and its rational approximation 518743

8369 , which satisfies
∣
∣
√

3842− 518743
8369

∣
∣ < 12

83692 .
The convergents of

√
3842 are 61

1 , 62
1 , 3781

61 , 3843
62 , 472627

7625 , 476470
7687 , 29060827

468845 , . . . . The
only representation of the fraction 518743

8369 in the form rpm+1+spm

rqm+1+sqm
, (r, s) ∈ R12 or

spm+2−tpm+1

sqm+2−tqm+1
, (s, t) ∈ T12 is 518743

8369 = 1·472627+12·3843
1·7625+12·62 = 1·p4+12·p3

1·q4+12·q3
, which shows that

the pair (1, 12) cannot be omitted from the set R12. �

3. Cases r = 1r = 1r = 1, s = 1s = 1s = 1 and t = 1t = 1t = 1

The results from the previous section suggest that there are some patterns
in pairs (r, s) and (s, t) which appear in representations (a, b) = (rpm+1 + spm,
rqm+1+sqm) and (a, b) = (spm+2−tpm+1, sqm+2−tqm+1) of solutions of inequality
(1.2). In particular, these patterns are easy to recognize for pairs of the form
(r, s) = (r, 1) or (1, s), and (s, t) = (s, 1) or (1, t). In this section we will prove that
the results on these pairs, already proved for k 6 12, are valid in general. These
facts will allow us to show that the inequality rs < 2k in Theorem 1.1 is sharp.

We will assume that k is a positive integer. From Theorem 1.1 it directly follows
that among the pairs of the form (r, 1), only pairs where r 6 2k − 1 can appear.
Similarly, for pairs (1, t) we have t 6 2k − 1. On the other hand, from (2.3) and
(2.5) it follows that for pairs (1, s) we have s 6 k, and for pairs (s, 1) we have s 6 k.
These results follow also from Theorem 1.2. We will show that all these pairs that
do not contradict Theorem 1.2 can indeed appear.
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Let αm = [am; am+1, am+2, . . .] and 1
βm

= qm−1

qm−2
= [am−1, am−2, . . . , a1], with

the convention that β1 = 0. Then for a
b = rpm+1+spm

rqm+1+sqm
, we have

b2
∣
∣α− a

b

∣
∣ = b

∣
∣
∣(rqm+1 + sqm)αm+2pm+1+pm

αm+2qm+1+qm
− (rpm+1 + spm)

∣
∣
∣

= |sαm+2−r|(rqm+1+sqm)
αm+2qm+1+qm

= |sαm+2−r|(r+sβm+2)
αm+2+βm+2

. (3.1)

We start with the pairs of the form (r, 1). Let us consider the number α =√
4k2 + 1. Its continued fraction expansion has the form

√

4k2 + 1 = [2k; 4k]

(see e.g. [8, p.297]). Take first m = −1, i.e. consider the rational number a
b defined

by
a

b
=
r · p0 + 1 · p−1

r · q0 + 1 · q−1
=

2rk + 1

r
= 2k +

1

r
.

Hence, a = 2rk+1 and b = r. We claim that for r 6 2k−1,
∣
∣α− a

b

∣
∣ < k

b2 holds. By

(3.1), this is equivalent to
(

1 − r
α1

)

r < k. For m > 1 we have αm = [4k, 4k, . . .] <

4k + 1
4k . Thus, it suffices to check that 4kr2 − (16k2 + 1)r + 16k3 + k > 0, which

is clearly satisfied for r 6 2k − 1. More precisely, this is satisfied for r less than
16k2+1−

√
16k2+1

8k > 2k − 1
2 .

We can proceed similarly for m > 0. The only difference is that 4k < 1
βm+2

=

[4k, . . . , 4k] < 4k+ 1
4k . Hence, by (3.1), we obtain that it suffices to check that for

r 6 2k − 1,
(

4k +
1

4k
− r

)
r + 1

4k

4k + 2
4k+ 1

4k

< k

holds. But this condition is equivalent to (256k4 + 16k2)r2 − (1024k5 + 64k3)r +
(1024k6 − 64k4 − 32k2 − 1) > 0, which holds for r less than 2k − 3

4 , so it certainly
holds for r 6 2k − 1.

The same example α =
√

4k2 + 1 can be used to handle the pairs (s, t) = (1, t).
The relation (3.1) can be reformulated in terms of s and t = sam+2 − r:

b2
∣
∣α− a

b

∣
∣ =

(

t+ s
αm+3

)
∣
∣
∣
∣
s−

t+ s
αm+3

αm+2+βm+2

∣
∣
∣
∣
. (3.2)

Now, for m = −1 we are considering the rational number

a

b
=
s · p1 − t · p0

s · q1 − t · q0
=

8k2 + 1 − 2tk

4k − t
= 2k +

1

4k − t
.

By (3.2), the condition
∣
∣α− a

b

∣
∣ < k

b2 leads to 16k2t2 − 64k3t+64k4− 12k2− 1 > 0.
Similarly, form > 0, we obtain the condition 8k2t2−(32k3+2k)t+32k4−4k2−1 > 0.
It is easy to see that both conditions are satisfied for t 6 2k − 1.
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For pairs of the form (1, s) and (s, 1) we use α of the form α =
√
x2 − 1, where

the integer x will be specified latter (if necessary). For x > 2, we have the following
continued fraction expansion

√

x2 − 1 = [x− 1; 1, 2x− 2]

(see e.g. [8, p.297]). Let us consider the pairs of the form (r, s) = (1, s). We take
m = −1 and define the rational number

a

b
=

1 · p0 + s · p−1

1 · q0 + s · q−1
=
x− 1 + s

1
.

Hence, a = x− 1 + s and b = 1, and for s 6 k,
∣
∣α− a

b

∣
∣ < (x − 1 + s) − (x− 1) = s 6 k

b2

holds. The same result for pairs (r, s) = (1, k) holds also if m > 1 is odd and if x
is sufficiently large. Indeed, from (3.1) we obtain the condition

(

k

(

1 +
1

2x− 2

)

− 1

)(

1 + k
2x−2

1 + 2
2x−1

)

< k,

which is satisfied for x > k2−2k+5
2 .

Finally, consider the pairs of the form (s, t) = (s, 1) for s 6 k. Take m = −1
and define the rational number

a

b
=
s · p1 − 1 · p0

s · q1 − 1 · q0
=
sx− x+ 1

s− 1
= x+

1

s− 1
.

Hence, a = sx− x+ 1 and b = s− 1. We have
√
x2 − 1 > p2

q2
= x− 1

2x−1 . Thus,

∣
∣α− a

b

∣
∣ < 1

s−1 + 1
2x−1 ,

and we obtain the condition

1

s− 1
+

1

2x− 1
<

k

(s− 1)2
. (3.3)

If we choose x to be greater than k2−2k+2
2 , then we have 1

2x−1 <
1

(k−1)2 , while for

s 6 k the inequality k
(s−1)2 − 1

s−1 > k
(k−1)2 − 1

k−1 = 1
(k−1)2 holds, and we showed

that for such x’s the condition (3.3) is fulfilled.
Again, the analogous result for pairs (s, t) = (k, 1) holds for all odd m > 1, but

x has to be larger than in the case m = −1. Namely, the relation (3.2) yields the
condition

(

1 +
k

2x− 2

)(

k − 1

1 + 2
2x−2

)

< k,
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which is satisfied for x > k2−k+6
2 .

Our results for the pairs (r, s) = (2k − 1, 1) and (s, t) = (1, 2k − 1) (with
α =

√
4k2 + 1) immediately imply the following result which shows that Theorem

1.1 is sharp.

Proposition 3.1. For each ε > 0 there exist a positive integer k, a real number α
and a rational number a

b , such that

∣
∣
∣α− a

b

∣
∣
∣ <

k

b2
,

and a
b cannot be represented in the form a

b = rpm+1±spm

rqm+1±sqm
, for m > −1 and nonneg-

ative integers r and s such that rs < (2 − ε)k.

Proof. Take k > 1
ε , α =

√
4k2 + 1 and e.g. a

b = 2k(2k−1)+1
2k−1 . Then

∣
∣α− a

b

∣
∣ < k

b2 . If
m = −1, then r = 2k−1, s = 1, t = 2k+1, and thus rs = 2k−1 > 2k−kε = (2−ε)k,
while st = 2k + 1. If m > 0, then from s = −bpm+1 + aqm+1 it follows that

|s| >

∣
∣
∣
a
b − p1

q1

∣
∣
∣ bq1 = 2k + 1, and therefore |rs| > 2k + 1 and |st| > 2k + 1. �

4. A Diophantine application

In [2], Dujella and Jadrijević considered the Thue inequality
∣
∣x4 − 4cx3y + (6c+ 2)x2y2 + 4cxy3 + y4

∣
∣ 6 6c+ 4,

where c > 3 is an integer. In this section we will assume that c > 5, since the cases
c = 3 and c = 4 require somewhat different details. Using the method of Tzanakis
[9], they showed that solving the Thue equation x4−4cx3y+(6c+ 2)x2y2+4cxy3+
y4 = µ, µ ∈ Z \ {0}, reduces to solving the system of Pellian equations

(2c+ 1)U2 − 2cV 2 = µ (4.1)

(c− 2)U2 − cZ2 = −2µ, (4.2)

where U = x2 + y2, V = x2 + xy − y2 and Z = −x2 + 4xy + y2. If suffices to find
solutions of the system (4.1) and (4.2) which satisfy the condition gcd(U, V, Z) = 1.
Then gcd(U, V ) = 1, and gcd(U,Z) = 1 or 2, since 4V 2 +Z2 = 5U2. It is clear that
the solutions of the system (4.1) and (4.2) induce good rational approximations
of the corresponding quadratic irrationals. More precisely, from [2, Lemma 4] we
have the inequalities given in the following lemma.

Lemma 4.1. Let c > 5 be an integer. All positive integer solutions (U, V, Z) of
the system of Pellian equations (4.1) and (4.2) satisfy

∣
∣
∣
∣
∣

√

2c+ 1

2c
− V

U

∣
∣
∣
∣
∣

<
2

U2
(4.3)
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∣
∣
∣
∣
∣

√

c− 2

c
− Z

U

∣
∣
∣
∣
∣

<
6c+ 4

U2
√

c (c− 2)
<

9

U2
. (4.4)

Using the result of Worley [12, Corollary, p. 206], in [2, Proposition 2] the
authors proved that if µ is an integer such that |µ| 6 6c+ 4 and that the equation
(4.1) has a solution in relatively prime integers U and V , then

µ ∈ {1, −2c, 2c+ 1, −6c+ 1, 6c+ 4}.
Analysing the system (4.1) and (4.2), and using the properties of convergents of
√

2c+1
2c , they were able to show that the system has no solutions for µ = −2c, 2c+

1,−6c+ 1. Applying results from the previous sections to the equation (4.2), we
will present here a new proof of that result, based on the precise information on
µ’s for which (4.2) has a solution in integers U and Z such that gcd(U,Z) ∈ {1, 2}.

The simple continued fraction expansion of a quadratic irrational α = e+
√

d
f is

periodic. This expansion can be obtained using the following algorithm. Multiply-
ing the numerator and the denominator by f , if necessary, we may assume that
f |(d− e2). Let s0 = e, t0 = f and

an =
⌊

sn+
√

d
tn

⌋

, sn+1 = antn − sn, tn+1 =
d−s2

n+1

tn
for n > 0 (4.5)

(see [6, Chapter 7.7]). If (sj , tj) = (sk, tk) for j < k, then

α = [a0; . . . , aj−1, aj , . . . , ak−1].

Applying this algorithm to
√

c−2
c =

√
c(c−2)

c , we find that

√

c− 2

c
= [0; 1, c− 2, 2].

According to our results (Proposition 2.2 for k = 9), applied to α =
√

c−2
c , all

solutions of (4.2) have the form Z/U = (rpm+1 + spm)/(rqm+1 + sqm) an index
m > −1 and integers r and s. For the determination of the corresponding µ’s, we
use the following result (see [2, Lemma 1]):

Lemma 4.2. Let αβ be a positive integer which is not a perfect square, and let

pm/qm denotes the mth convergent of continued fraction expansion of
√

α
β . Let the

sequences (sm) and (tm) be defined by (4.5) for the quadratic irrational
√

αβ
β . Then

α(rqm+1 + sqm)2 − β(rpm+1 + spm)2

= (−1)m(s2tm+1 + 2rssm+2 − r2tm+2). (4.6)

Since the period of the continued fraction expansion of
√

c−2
c is equal to 2,

according to Lemma 4.2, we have to consider only the fractions rpm+1+spm

rqm+1+sqm
for

m = 1 and m = 2. By checking all possibilities, we obtain the following result.
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Proposition 4.3. Let µ be an integer such that |µ| 6 6c+ 4 and that the equation

(c− 2)U2 − cZ2 = −2µ

has a solution in integers U and Z such that gcd(U,Z) = 1 or 2.

(i) If c > 15 is odd, then

µ ∈M1 = {1, 4, 2c, 4c+ 1, 6c+ 4,−2c+ 4,−4c+ 9,−6c+ 16}.

Furthermore, if c = 5, 11, 13, then µ ∈ M1 ∪ {−8c + 25}; if c = 9, then
µ ∈M1 ∪ {−8c+ 25,−10c+ 36}; if c = 7, then µ ∈M1 ∪ {−8c+ 25,−10c+
36,−12c+ 49}.

(ii) Let M = M1 ∪M2, where

M2 =

{

−11

2
c+ 36,−9

2
c+ 25,−7

2
c+ 16,−5

2
c+ 9,−3

2
c+ 4,−1

2
c+ 1,

1

2
c,

3

2
c+ 1,

5

2
c+ 4,

7

2
c+ 9

}

.

If c > 108 is even, then µ ∈M ∪
{

9
2c+ 16, 11

2 c+ 25
}
.

For even c with 6 6 c 6 106, we have µ ∈M ∪M (c), where M (c) can be given
explicitly, as in the case (i). E.g.

M (6) =

{

−21

2
c+ 25,−10c+ 36,−8c+ 25,−15

2
c+ 16

}

.

Comparing the set {1, −2c, 2c+1, −6c+1, 6c+4} from [2, Proposition 2] with
the sets appearing in Proposition 4.3, we obtain the desired conclusion.

Corollary 4.4. Let c > 5 be an integer. If the system (4.1) and (4.2) has a
solution with |µ| 6 6c+ 4 in integers U , V and Z such that gcd(U, V, Z) = 1, then
µ = 1 or µ = 6c+ 4.
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Abstract

We describes cases when we can simplify a general SAT problem instance
by sub-model propagation. Assume that we test our input clause set whether
it is blocked or not, because we know that a blocked clause set can be solved
in polynomial time. If the input clause set is not blocked, but some clauses
are blocked, then what can we do? Can we use the blocked clauses to simplify
the clause set? The Blocked Clear Clause Rule and the Independent Blocked
Clause Rule describe cases when the answer is yes. The other two indepen-
dent clause rules, the Independent Nondecisive- and Independent Strongly
Nondecisive Clause Rules describe cases when we can use nondecisive and
strongly nondecisive clauses to simplify a general SAT problem instance.

Keywords: SAT, blocked clause, nondecisive clause

MSC: 03-04

1. Introduction

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables for
which that formula evaluates the true. By SAT we mean the problem of proposi-
tional satisfiability for formulae in conjunctive normal form (CNF).

SAT is the first, and one of the simplest, of the many problems which have been
shown to be NP-complete [7]. It is dual of propositional theorem proving, and many
practical NP-hard problems may be transformed efficiently to SAT. Thus, a good
SAT algorithm would likely have considerable utility. It seems improbable that a
polynomial time algorithm will be found for the general SAT problem but we know

∗Partially supported by TéT 2006/A-16.

75



76 G. Kusper, L. Csőke, G. Kovásznai

that there are restricted SAT problems that are solvable in polynomial time. So
a “good” SAT algorithm should check first the input SAT instance whether it is
an instance of such a restricted SAT problem or can be simplified by a preprocess
step. In this paper we introduce some possible simplification techniques. We list
some polynomial time solvable restricted SAT problems:

1. The restriction of SAT to instances where all clauses have length k is denoted
by k-SAT. Of special interest are 2-SAT and 3-SAT : 3 is the smallest value of k
for which k-SAT is NP-complete, while 2-SAT is solvable in linear time [10, 1].

2. Horn SAT is the restriction to instances where each clause has at most
one positive literal. Horn SAT is solvable in linear time [9, 19], as are a number
of generalizations such as renamable Horn SAT [2], extended Horn SAT [5] and
q-Horn SAT [3, 4].

3. The hierarchy of tractable satisfiability problems [8], which is based on Horn
SAT and 2-SAT, is solvable in polynomial time. An instance on the k-th level of
the hierarchy is solvable in O(nk + 1) time.

4. Nested SAT, in which there is a linear ordering on the variables and no two
clauses overlap with respect to the interval defined by the variables they contain
[12].

5. SAT in which no variable appears more than twice. All such problems are
satisfiable if they contain no unit clauses [20].

6. r,r-SAT, where r,s-SAT is the class of problems in which every clause has ex-
actly r literals and every variable has at most s occurrences. All r,r-SAT problems
are satisfiable in polynomial time [20].

7. A formula is SLUR (Single Lookahead Unit Resolution) solvable if, for all pos-
sible sequences of selected variables, algorithm SLUR does not give up. Algorithm
SLUR is a nondeterministic algorithm based on unit propagation. It eventually
gives up the search if it starts with, or creates, an unsatisfiable formula with no
unit clauses. The class of SLUR solvable formulae was developed as a generaliza-
tion including Horn SAT, renamable Horn SAT, extended Horn SAT, and the class
of CC-balanced formulae [18].

8. Resolution-Free SAT Problem, where every resolution results in a tautologous
clause, is solvable in linear time [16].

8. Blocked SAT Problem, where every clause is blocked, is solvable in polyno-
mial time [13, 14, 17].

In this paper we describes cases when we can simplify a general SAT problem
instance by sub-model propagation, which means hyper-unit propagating [15, 16]
a sub-model [17]. Assume that we test our input clause set whether it is blocked
or not, because we know [17] that a blocked clause set can be solved in polynomial
time. If the input clause set is not blocked, but some clauses are blocked, then what
can we do? Can we use the blocked clauses to simplify the clause set? The Blocked
Clear Clause Rule and the Independent Blocked Clause Rule describe cases when
the answer is yes.

The other two independent clause rules, the Independent Nondecisive- and Inde-
pendent Strongly Nondecisive Clause Rules describe cases when we can use nonde-
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cisive and strongly nondecisive clauses to simplify a general SAT problem instance.
The notion of blocked [13, 14] and nondecisive clause [11] was introduced by

O. Kullmann and A. V. Gelder. They showed that a blocked or nondecisive clause
can be added or deleted from a clause set without changing its satisfiability.

Intuitively a blocked clause has a liter on which every resolution in the clause
set is tautology. A nondecisive clause has a literal on which every resolution in
the clause set is either tautology or subsumed. We also use the notion of strongly
nondecisive clause, which has a liter on which every resolution in the clause set is
either tautology or entailed. We also use very frequently the notion of clear clause.
A clause is clear if every variable which occurs in the clause set occurs also in this
clause either positively or negatively. Note, that clear clauses are called also total
or full clauses in the literature.

The Blocked Clear Clause Rule describes two cases. The two cases have a
common property: the input clause set contains a blocked clear clause. In the first
case the input clause set is a subset of CC, in the second case the blocked clear
clause is not subsumed. In both cases the sub-model generated from the blocked
clear clause and from one of its blocked literals is a model for the input clause set.

In both cases we need in the worst-case O(n2m3) time to decide whether the
input clause set fulfills the requirements of the Blocked Clear Clause Rule. We need
O(n2m3) time, because we have to check blocked-ness in both two cases, which is
an O(n2m2) time method, and not subsumed-ness in the second case, which is an
O(m) time method.

The Independent Blocked Clause Rule is a generalization of the Blocked Clear
Clause Rule. We can apply it if we have a blocked clause and it subsumes a
clear clause that is it not subsumed by any other clause from the clause set, i.e.,
the blocked clause is independent. In this case the sub-model generated from the
independent blocked clause and from one of its blocked literals is a partial model,
i.e., we can simplify the input clause set by propagating this sub-model.

Note that if we know the subsumed clear clause which is not subsumed by any
other clause from the input clause set then we know the whole model. This applies
for the other independent clause rules.

We need in the worst-case O(2nn2m3) time to decide whether the input clause
set fulfills the requirements of the Independent Blocked Clause Rule. We need
O(2nn2m3) time, because we have to check blocked-ness, which is an O(n2m2)
time method, and independent-ness, which is an O(2nm) time method.

The Independent Nondecisive Clause Rule is a generalization of the Independent
Blocked Clause Rule. We can apply it if we have a independent nondecisive clause.
In this case the sub-model generated from it and from one of its nondecisive literals
is a partial model, i.e., we can simplify the input clause set by propagating this
sub-model.

We need in the worst-case O(2nnm4) time to decide whether the input clause
set fulfills the requirements of the Independent Nondecisive Clause Rule. We
need O(2nnm4) time, because we have to check nondecisive-ness, which is an
Max{O(n2m2), O(nm3)} time method, and independent-ness, which is an O(2nm)
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time method. We assume that nm3 > n2m2.
The Independent Strongly Nondecisive Clause Rule is a generalization of the

Independent Nondecisive Clause Rule. We can apply it if we have a independent
strongly nondecisive clause. In this case the sub-model generated from it and from
one of its strongly nondecisive literals is a partial model, i.e., we can simplify the
input clause set by propagating this sub-model.

We need in the worst-caseO(2n+1m) time to decide whether the input clause set
fulfills the requirements of the Independent Strongly Nondecisive Clause Rule. We
need O(2n+1m) time, because we have to check strongly nondecisive-ness, which is
an O(n2) time method, and independent-ness, which is an O(2nm) time method.

Since the independent clause test is too expensive (it is exponential) we intro-
duce some heuristics which can guess which clause might be independent. Further-
more, we introduce an algorithm which might find strongly nondecisive clauses in
O(n3m2) time.

2. Definitions

Set of variables, literals

Let V be a finite set of Boolean variables. The negation of a variable v is
denoted by v. Given a set U , we denote U := {u | u ∈ U} and call the negation of
the set U .

Literals are the members of the set W := V ∪ V . Positive literals are the
members of the set V . Negative literals are their negations. If w denotes a negative
literal v, then w denotes the positive literal v.

Clause, clause set, assignment, assignment set

Clauses and assignments are finite sets of literals that do not contain simulta-
neously any literal together with its negation.

A clause is interpreted as disjunction of its literals. An assignment is interpreted
as conjunction of its literals. Informally speaking, if an assignment A contains a
literal v, it means that v has the value True ∈ A. A clause set or formula (formula
in CNF form) is a finite set of clauses. A clause set is interpreted as conjunction of
its clauses. If C is a clause, then C is an assignment. If A is an assignment, then
A is a clause. The empty clause is interpreted as False. The empty assignment is
interpreted as True. The empty clause set is interpreted as True.

The empty set is denoted by ∅. The length of a set U is its cardinality, denoted
by |U |. The natural number n is the number of variables, i.e., n := |V |.

Cardinality, kkk-clause, clear clause, CC

If C is a clause and |C| = k, then we say that C is a k-clause. Special cases
are unit clauses or units which are 1-clauses, and clear or total clauses which are
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n-clauses. Note that any unit clause is at the same time a clause and an assignment.
In this paper we prefer the name clear clause instead of total or full clause.

Although, total clause is used in the literature, in our point of view the name clear
clause is more intuitive.

The clause set CC is the set of all clear clauses.

Subsumption, entailed-ness, independent-ness

The clause C subsumes the clause B iff C is a subset of B. The interpretation
of the notion of subsumption is logical consequence, i.e., B is a logical consequence
of C.

We say that a clause C is subsumed by the clause set S, denoted by C ⊇∈ S,
iff there is a clause in S which subsumes it. We say that a clause C is entailed by
the clause set S, denoted by C ⊇∈CC S, iff for any clear clause, which is subsumed
by C, there is a clause in S which subsumes that clear clause.

The interpretation of the notion of subsumed and entailed is the same, logical
consequence, i.e., C is a logical consequence of S. Note that if a clause is subsumed
by a clause set then it is entailed, but not the other way around. Furthermore,
if a clear clause is subsumed by a clause set then it is entailed and the other way
around.

C ⊇∈ S : ⇐⇒ Clause(C) ∧ ClauseSet(S)∧ ∃[B ∈ S]B ⊆ C.

C ⊇∈CC S : ⇐⇒ Clause(C)∧ClauseSet(S)∧∀[D ∈ CC][C ⊆ D]∃[B ∈ S]B ⊆ D.

We shall explain the intuition behind the notation ⊇∈. If we rewrite its definition
and leave out the “not interesting” parts (written in brackets) then we obtain this
notation:

∃[B ∈ S]B ⊆ C ⇐⇒ (∃[B])C ⊇ (B ∧B) ∈ S ⇐⇒ C ⊇∈ S.

We say that a clause C is independent in clause set S iff it is not entailed by S.

Clause difference, resolution

We introduce the notion of clause difference. We say that two clauses differ in
some variables iff these variables occur in both clauses but as different literals. If
A and B are clauses then the clause difference of them, denoted by diff(A,B), is

diff(A,B) := A ∩B.

If diff(A,B) 6= ∅ then we say that A differs from B. Note that diff(A,B) =
diff(B,A).

We say that resolution can be performed on two clauses iff they differ only in
one variable. Note that this is not the usual notion of resolution, because we allow
resolution only if it results in a non-tautologous resolvent. For example resolution
cannot be performed on {v, w} and {v, w} but can be performed on {v, w} and
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{v, z}. If resolution can be performed on two clauses, say A and B, then the
resolvent, denoted by Res(A,B), is their union excluding the variable they differ
in:

Res(A,B) := (A ∪B) \ (diff(A,B) ∪ diff(B,A)).

Note that if we interpret Res(A,B) as a logical formula then it is a logical conse-
quence of the clauses A and B.

Pure literal, blocked- literal, clause, clause set

We say that a literal c ∈ C is blocked in the clause C and in the clause set S iff
for each clause B inS which contains c we have that there is a literal b ∈ B such
that b 6= c and b ∈ C. A clause is blocked in a clause set iff it contains a blocked
literal. A clause set is blocked iff all clauses are blocked in it. We denote these
notions by Blck(c, C, S), Blck(C, S) and Blck(S), respectively.

Note that if literal c ∈ C is blocked in C, S then for all B ∈ S, c ∈ B we have
that resolution cannot be performed on C and B. This means that this clause is
“blocked” against resolution.

We say that a literal is pure in a clause set if its negation does not occur in the
clause set. Note that pure literals are blocked.

(Weakly/strongly) nondecisive- literal, clause, clause set

We define formally the notion of weakly nondecisive literal, clause and clause set.
We denote these notions by WnD(c, C, S), WnD(C, S) and WnD(S), respectively.

WnD(c, C, S) : ⇐⇒ ∀[B ∈ S][c ∈ B](∃[b ∈ B][b 6= c]b ∈ C ∨ Res(C,B) ⊇∈ S).

WnD(C, S) : ⇐⇒ ∃[c ∈ C]WnD(c, C, S).

WnD(S) : ⇐⇒ ∀[C ∈ S]WnD(C, S).

We define formally the notion ofnondecisive literal, clause and clause set. We
denote these notions by NonD(c, C, S), NonD(C, S) and NonD(S), respectively.

NonD(c, C, S) : ⇐⇒
∀[B ∈ S][c ∈ B](∃[b ∈ B][b 6= c]b ∈ C ∨ Res(C,B) ∪ {c} ⊇∈ S \ {C}).

NonD(C, S) : ⇐⇒ ∃[c ∈ C]NonD(c, C, S).

NonD(S) : ⇐⇒ ∀[C ∈ S]NonD(C, S).

We define formally the notion of strongly nondecisive literal, clause and clause
set. We denote these notions by SND(c, C, S), SND(C, S) and SND(S), respec-
tively.

SND(c, C, S) : ⇐⇒
∀[B ∈ S][c ∈ B](∃[b ∈ B][b 6= c]b ∈ C ∨ Res(C,B) ∪ {c} ⊇∈CC S \ {C}).

SND(C, S) : ⇐⇒ ∃[c ∈ C]SND(c, C, S).

SND(S) : ⇐⇒ ∀[C ∈ S]SND(C, S).
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Resolution-mate, sub-model

If C is a clause and c is a literal in C then the resolution-mate of clause C by
literal c, denoted by rm(C, c), is

rm(C, c) := (C ∪ {c}) \ {c}.

Note that resolution can be always performed on C and rm(C, c), and

Res(C, rm(C, c)) = C \ {c}.

This means that we obtain a shorter clause.
The sub-model generated from the clause C and from the literal c, denoted by

sm(C, c), is
sm(C, c) := rm(C, c).

We say that C and c are the generator of sm(C, c). The name “sub-model” comes
from the observation that in a resolution-free clause set an assignment created from
one of the shortest clauses in this way is a part of a model [16], i.e., a sub-model.

Note that rm(C, c) is a clause but sm(C, c) is an assignment.
The sub-model sm(C, c) is a special assignment which always satisfies clause C,

since it sets literal c to be True.

Model, (un)satisfiable

An assignment M is a model for a clause set S iff for all C ∈ S we have
M ∩C 6= ∅.

A clause set is satisfiable iff there is a model for it. A clause set is unsatisfiable
iff it is not satisfiable. A clause set is trivially satisfiable iff it is empty and it is
trivially unsatisfiable if it contains the empty clause.

3. The Blocked Clear Clause Rule

In this section we introduce the Blocked Clear Clause Rule, a generalization of
the Clear Clause Rule. This rule is introduced by the author.

Assume we test our input clause set whether it is blocked or not, because we
know [17] that a blocked clause set can be solved in polynomial time. If the input
clause set is not blocked, but some clauses are blocked, then what can we do? Can
we use the blocked clauses to simplify the clause set? If it contains a not subsumed
blocked clear clause, we can. This is what the Blocked Clear Clause Rule states.

It has two variants. The first one states that if a clause set contains only clear
clauses and one of them is blocked then the sub-model generated from this blocked
clause and from one of its blocked literal is a model. This is a very rare case, but
since we can construct for each clause set the equivalent clear clause set, this rule
plays an important role.
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The second one states that if a clause set contains a not subsumed blocked clear
clause then the sub-model generated from it and from one of its blocked literals is
a model. This case is still a very rare one, but might occur more frequently as the
first variant.

Lemma 3.1 (Blocked Clear Clause Rule). Let S be a clause set. Let C ∈ S be a
blocked and clear clause. Let a ∈ C be a blocked literal C, S.
(a) If S is a subset of CC, then sm(C, a) is a model for S.
(b) If C is not subsumed by S \ {C}, then sm(C, a) is a model for S.

Proof. (a) To show this, by definition of model, it suffices to show that for an
arbitrary but fixed B ∈ S we have that B ∩ sm(C, a) is not empty. Since S is a
subset of CC we know that B is a clear clause. Hence, there are two cases, either
a ∈ B or a ∈ B.

In case a ∈ B we have, by definition of sub-model, that a ∈ sm(C, a). Hence,
B ∩ sm(C, a) is not empty.

In case a ∈ B, since a ∈ C is blocked in C, S we know, by definition of blocked
literal, that for some b ∈ B we have b 6= a and b ∈ C. From this, by definition of
sub-model, we know that b ∈ sm(C, a). Hence, B ∩ sm(C, a) is not empty.

Hence, if S is a subset of CC, then sm(C, a) is a model for S.

(b) To show this, by definition of model, it suffices to show that for an arbitrary
but fixed B ∈ S we have that B ∩ sm(C, a) is not empty. Since C is not subsumed
by S \ {C} we know, by definition of subsumption, that B * C. From this, since
C is a clear clause we know that for some b ∈ B we have b ∈ C. There are two
cases, either b = a or b 6= a.

In the first case we have b = a, i.e., a ∈ B. From this since a ∈ C is blocked in
C, S we know, by definition of blocked literal, that for some d ∈ B we have that
d 6= a and d ∈ C. From this, by definition of sub-model, we know that d ∈ sm(C, a).
Hence, B ∩ sm(C, a) is not empty.

In the second case we have b 6= a. From this and from b ∈ C we know, by
definition of sub-model, that b ∈ sm(C, a). Hence, B ∩ sm(C, a) is not empty.

Hence, If C is not subsumed by S \ {C}, then sm(C, a) is a model for S. �

An alternative proof idea is that we say that it suffices to show that the
resolution-mate of C (rm(C, a)) is not subsumed by S. Then we know, by Clear
Clause Rule, that its negation (sm(C, a)) is a model.

This alternative proof idea shows in which sense say we that the Blocked Clear
Clause Rule is a generalization of the Clear Clause Rule.

This rule is the base of the independent clause rules. Therefore, it is very
important for us.

4. The Independent Blocked Clause Rule

In this section we introduce the Independent Blocked Clause Rule, a general-
ization of the Blocked Clear Clause Rule. This rule is introduced by the author.
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The Independent Blocked Clause Rule states that if a clause set contains an
independent blocked clause, then it is satisfiable and a sub-model generated from
this clause and from one of its blocked literals is a partial model, i.e., we can simplify
the clause set by propagating this sub-model. These requirements are fulfilled quite
often by real or benchmark problems, but checking independent-ness is expensive.

We know that a clause A ∈ S is independent in the clause set S \ {A} if it is
not entailed by S \ {A}. The formal definition is the following:

A independent in S : ⇐⇒ ∃[C ∈ CC][A ⊆ C]∀[B ∈ S][B 6= A]B * C.

The following algorithm checks whether the input clause is independent or not
in the input clause. If it is independent, then it returns a clear clause subsumed
by the input clause but not subsumed by any other clause from the input clause
set. Otherwise, it returns the empty clause. In the worst-case it uses O(2nm) time,
because it follows the definition of independent, and there we have two quantifiers,
one on CC which has 2n elements, the other on the input clause set, which has m
elements.

Independent clause test

1 function IsIndependent(S : clause set, A : clause) : clause

2 begin

3 for each C ∈ CC, A ⊆ C do

4 B_notsubsumes_C := True;

5 for each B ∈ S, B 6= A while B_notsubsumes_C isTrue do

6 if (B ⊆ C) then B_notsubsumes_C := False;

7 od

8 if (B_notsubsumes_C) then return C;

9 // In this case we found a suitable C, we return it.

10 od

11 return ∅;

12 // In this case we found no suitable clause.

13 // Therefore, we return the empty clause.

14 end

One can see that the independent clause test is very expensive ( exponential).
We will discuss later how can we get around this problem by suitable heuristics.

Lemma 4.1 (Independent Blocked Clause Rule). Let S be a clause set. Let A ∈ S
be blocked in S and independent in S \ {A}. Let a ∈ A be a blocked literal in A,S.
Then there is a model M for S such that sm(A, a) ⊆M .
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Proof. We know that A is independent in S \ {A}. Hence, by definition of inde-
pendent, we know that there is a clear clause C that is subsumed by A and not sub-
sumed by any other clause in S. Since A ⊆ C we know that sm(A, a) ⊆ sm(C, a).
Hence, it suffices to show that sm(C, a) is a model for S. To show this, by definition
of model, it suffices to show that for an arbitrary but fixed B ∈ S we have that
B∩sm(C, a) is not empty. The remaining part of the proof is the same as the proof
of the (b) variant of the Blocked Clear Clause Rule.

Hence, B ∩ sm(C, a) is not empty. Hence, there is a model M for S such that
sm(A, a) ⊆M . �

This proof is traced back to the proof of Blocked Clear Clause Rule. We can do
this because we know that there is a clear clause which is blocked and not entailed
by S \ {A}. We know that for clear clauses the notion of subsumed and entailed
are the same.

The proof of this lemma shows that if we perform an independent clause check
and we find a clear clause which is subsumed by only one clause, then we know the
whole model (sm(C, a)) and not only a part of the model (sm(A, a)). But usually
we do not want to perform expensive independent-ness checks. How can we get
around this problem? The solution is a heuristic which tells us which blocked clause
could be independent.

Such a heuristic could be for instance the selection of the shortest blocked clause.
The shortest clause subsumes the largest number of clear clauses. Therefore, it has
a good chance to be independent, but there is no guarantee for it. We give more
details about heuristics after the discussion of the simplifying rules.

5. The Independent Nondecisive Clause Rule

In this section we introduce the Independent Nondecisive Clause Rule, a gener-
alization of the Independent Blocked Clause Rule. This rule is introduced by the
author.

The Independent Nondecisive Clause Rule states that if a clause set contains
an independent nondecisive clause, then it is satisfiable and a sub-model generated
from this clause and from one of its nondecisive literals is a partial model, i.e., we
can simplify the clause set by propagating this sub-model. These requirements are
fulfilled quite often by real or benchmark problems, but checking independent-ness
is expensive.

Lemma 5.1 (Independent Nondecisive Clause Rule). Let S be a clause set. Let
A ∈ S be nondecisive in S and independent in S \ {A}. Let a ∈ A be a nondecisive
literal in A,S. Then there is a model M for S such that sm(A, a) ⊆M .

Proof. We know that A is independent in S \ {A}. Hence, by definition of inde-
pendent, we know that there is a clear clause C that is subsumed by A and not sub-
sumed by any other clause in S. Since A ⊆ C we know that sm(A, a) ⊆ sm(C, a).
Hence, it suffices to show that sm(C, a) is a model for S. To show this, by definition
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of model, it suffices to show that for an arbitrary but fixed B ∈ S we have that
B ∩ sm(C, a) is not empty. There are three cases: either (a) a ∈ B or (b) a ∈ B or
(c) a /∈ B and a /∈ B.

In case (a) we have a ∈ B. From this and from the definition of sub-model we
know that a ∈ B ∩ sm(C, a).

In case (b) we have a ∈ B. From this and from a ∈ A is nondecisive in A,S, by
definition of nondecisive literal, we know that either there is a literal b ∈ B which
has b 6= a and b ∈ A or there is a clause D ∈ S,D 6= A which has D ⊆ A ∪B{a}.

In the first case we know, by definition of sub-model, that b ∈ sm(A, a).
In the second case since C is independent in S \ {A}, by definition of indepen-

dent, we know that D does not subsume C, i.e., for some d ∈ D we have d /∈ C.
From this and from A ⊆ C and from D ⊆ A∪B{a} we can show that d /∈ A, d ∈ B
and d 6= a. From d /∈ C we know, by definition of clear clause, that d ∈ C. Hence,
by definition of sub-model, d ∈ B ∩ sm(C, a).

In case (c) we have a /∈ B and a /∈ B. Since C is not subsumed by S \ {A}
we know, by definition of subsumption, that B * C. From this, since C is a clear
clause we know that for some b ∈ B we have b ∈ C. There are two cases, either
b = a or b 6= a.

In the first case we have b = a, i.e., a ∈ B. But we already know that a /∈ B.
Hence, this is a contradiction.

In the second case we have b 6= a. From this and from b ∈ C we know, by
definition of sub-model, that b ∈ sm(C, a). Hence, B ∩ sm(C, a) is not empty.

Hence, there is a model M for S such that sm(A, a) ⊆M . �

This lemma is more powerful then the Independent Blocked Clause Rule, be-
cause each blocked clause is nondecisive but not the other way around.

6. The Independent Strongly Nondecisive Clause

Rule

In this section we introduce the Independent Strongly Nondecisive Clause Rule,
a generalization of the Independent Nondecisive Clause Rule. This rule is intro-
duced by the author.

The Independent Strongly Nondecisive Clause Rule states that if a clause set
contains an independent strongly nondecisive clause, then it is satisfiable and a sub-
model generated from this clause and from one of its strongly nondecisive literals is
a partial model, i.e., we can simplify the clause set by propagating this sub-model.
These requirements are fulfilled very often by 3-SAT benchmark problems, but
checking independent-ness and strongly nondecisive-ness is expensive.

We will see from our test result that the Independent Blocked Clause Rule
can be applied only on few 3-SAT instances. The Independent Nondecisive Rule is
better, but still can be applied only on every tenth benchmark problem. Therefore,
we tried to find an even more powerful simplification rule. Finally, we found the
Independent Strongly Nondecisive Clause Rule.
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The idea is the following: We know that a nondecisive clause is either blocked
or a special construction (Res(A,B) ∪ {a}) is subsumed. This rings a bell. If we
would use the notion of entailed instead of subsumed then the rule would be more
powerful. Let us check whether this idea works or not.

Lemma 6.1 (Independent Strongly Nondecisive Clause Rule). Let S be a clause
set. Let A ∈ S be strongly nondecisive in S and independent in S \ {A}. Let a ∈ A
be a strongly nondecisive literal in A,S. Then there is a model M for S such that
sm(A, a) ⊆M .

Proof. We know that A is independent in S \ {A}. Hence, by definition of inde-
pendent, we know that there is a clear clause C that is subsumed by A and not sub-
sumed by any other clause in S. Since A ⊆ C we know that sm(A, a) ⊆ sm(C, a).
Hence, it suffices to show that sm(C, a) is a model for S. To show this, by definition
of model, it suffices to show that for an arbitrary but fixed B ∈ S we have that
B ∩ sm(C, a) is not empty. There are three cases, either (a) a ∈ B or (b) a ∈ B or
(c) a /∈ B and a /∈ B.

In case (a) we have a ∈ B. From this and from the definition of sub-model we
know that a ∈ B ∩ sm(C, a).

In case (b) we have a ∈ B. From this and from a ∈ A is nondecisive in A,S, by
definition of nondecisive literal, we know that either there is a literal b ∈ B which
has b 6= a and b ∈ A or Res(A,B) ∪ {a}) is entailed in S \ {A}.

In the first case we know, by definition of sub-model, that b ∈ sm(A, a).
In the second case we know that Res(A,B) ∪ {a}) is entailed in S \ {A}. From

this we know, by definition of entailed, that

∀[D ∈ CC][A ∪B \ {a} ⊆ D]∃[E ∈ S][E 6= A]E ⊆ D.

From this we know that there is a literal b ∈ B, b 6= a such that b /∈ C because
otherwise we would have that A ∪ B \ {a} ⊆ C, which would mean that C is
subsumed in S \ {A}, which would be a contradiction. From b /∈ C we know,
by definition of clear clause, that b ∈ C. From b 6= a we know, by definition of
sub-model, that b ∈ sm(C, a). Hence, b ∈ B ∩ sm(C, a).

In case (c) we have a /∈ B and a /∈ B. Since C is not subsumed by S \ {A}
we know, by definition of subsumption, that B * C. From this, since C is a clear
clause we know that for some b ∈ B we have b ∈ C. There are two cases, either
b = a or b 6= a.

In the first case we have b = a, i.e., a ∈ B. But we already know that a /∈ B.
Hence, this is a contradiction.

In the second case we have b 6= a. From this and from b ∈ C we know, by
definition of sub-model, that b ∈ sm(C, a). Hence, B ∩ sm(C, a) is not empty.

Hence, there is a model M for S such that sm(A, a) ⊆M . �

Note that Res(A,B) ∪ {a} = A ∪B \ {a}.
We see that this proof is almost the same as the proof of the Independent

Nondecisive Clause Rule except for the second part of case (b). Here we use the
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following idea: C is subsumed by A but not by A∪B \ {a}, hence there is a literal
b ∈ B which has b 6= a and b /∈ C.

So the Independent Strongly Nondecisive Clause Rule works. But to decide
whether we can apply it or not we have to perform an entailed-ness check, which
is an exponential time method.

What can we do? There are some special cases when it is easy to check entailed-
ness. For example the clause E is entailed in the clause set S if we have E ∈ S or
there is a clause B ∈ S which simply subsumes E. This cases are very rare. The
case we are going to describe occurs very often in 3-SAT problem instances.

Assume that we want to check whether the clause E is entailed in the clause set
S. Assume we found a clause D ∈ S which has the following two properties: (a)
diff(E,D) = ∅ and (b) D \E is a singleton. The first property is needed otherwise
D could not subsume any clear clause subsumed by E. The second property says
that D subsumes the “half” of E.

Assume that D \ E = {d}. Then D subsumes all clear clauses which are the
superset of E ∪ {d}. If E subsumes 2k clear clauses and d /∈ E then E ∪ {d}
subsumes k clear clauses and E ∪ {d} subsumes the remaining k clear clauses.
Hence, we can say that D subsumes the “half” of E. So we can reduce the problem
to whether E ∪ {d}, the remaining “half”, is entailed in S or not. We call this step
to cut E in half.

This situation occurs very often in 3-SAT problem instances, because our E =
A ∪ B \ {a} has a length of 5, clauses in the input clause set have a length of 3,
and usually we have n ≫ 5, where n is the number of variables. This means that
it is very likely that we can use this step at least once.

The following algorithm uses this step to find strongly nondecisive clauses. In
the worst-case it is a O(n3m2) time method, but there is no guarantee that it finds
any strongly nondecisive clauses.

GetSNDClauses
1 function GetSNDClauses(S : clauseset) : array of 〈clause, literal〉

2 begin

3 i := 0;

4 // We need i to index the array SND.

5 for each A ∈ S do

6 a_is_snd := False;

7 for each a ∈ A while a_is_snd isFalse do

8 B_snds_a := True;

9 for each B ∈ S, a ∈ B while B_snds_a isTrue do

10 b_blocks_a := False;

11 D_subsumes_E := False;

12 B := B \ {a};
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13 if (diff(B, A) 6= ∅) then b_blocks_a := True;

14 else

15 E := A ∪ B;

16 for each D ∈ S, D 6= A while D_subsumes_E is False do

17 if (D ⊆ E) then D_subsumes_E := True;

18 if (diff(D, E) = ∅ ∧ |D \ E| = 1) then

19 E := E ∪ (D \ E);

20 Restart the last loop ;

21 // We have to restart the loop on clauses D,

22 // because the remaining half could be subsumed

23 // by a clause, which was already considered.

24 fi

25 od

26 fi

27 if (¬b_blocks_a ∧ ¬D_subsumes_E) then B_snds_a := False;

28 od

29 if (B_snds_a) then a_is_snd := True;

30 od

31 if (a_is_nond) then (SND[i], i) := (〈A, a〉, i + 1);

32 od

33 return SND;

34 end

The new rows are the ones from 14 till 26. We use in the 20th row a very
interesting solution, we restart the innermost loop. We discuss this issue a bit
later.

One can see that this algorithm returns an array of ordered pairs. An ordered
pair contains a strongly nondecisive clause C and a strongly nondecisive literal
c ∈ C.

Note that this algorithm might not find all strongly nondecisive clauses, because
it does not use entailed-ness check, but the “cut E in half” step, described above.

This algorithm is an O(n3m2) time method in the worst-case, where n is the
number of variables and m is the number of clauses of the input clause set. It is
an O(n3m2) time method, because we have two loops on clauses and two loops on
literals, but the innermost loop might be restarted n times in the worst-case.

One might ask, why do we need to restart the innermost loop? Assume we have
the situation that we can cut E in half, i.e., we have found a clause D ∈ S,D 6= A
which has diff(D,E) = ∅ and D \ E is a singleton. Then there is no D′ clause
among the ones we already considered such that D′ subsumes E ∪ (D \E), because
D′ fulfills the same requirements as D, i.e., it would be already used to cut E in
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half. Then why should we restart?
That is true, but there might be clauses among the ones we already considered

which can cut the new E in half and in the rest of the clause set there is no suitable
clause which subsumes E or can cut it in half. Therefore, we have to restart the
innermost loop.

7. Heuristics

In this subsection we introduce three heuristics. All of them are suitable more
or less to guess whether a clause is independent or not.

All three heuristics are based on the following idea. A clause A is independent
in the clause set S \ {A} if A is a subset of a model of S, i.e., after propagating A
on S, let us call the resulting clause set S′, S′ is satisfiable. Of course we do not
want to perform expensive satisfiability checks, but we want to guess whether it is
satisfiable or not. The idea is the following: the less clauses are contained in S′,
the more likely is that it is satisfiable.

This means that we have to count the clauses in S′. But propagation of an
assignment is still to expensive for us. Therefore, we count the clauses in the
following set:

{B | B ∈ S ∧ diff(A,B) = ∅}.

Note that if a clause C is in this set then the clause C′ = C \A is element of S′.
In the first version, called IBCR-1111, we just count each blocked clause A the

clauses B that have diff(A,B) = ∅ and we choose the one for which this number is
the smallest.

Our test results on 3-SAT problem instances shows that this heuristic provides
an independent blocked clause in 68% of the cases if there is an independent blocked
clause.

In the other two versions we use weights.
In the second version, called IBCR-1234, we count each blocked clause A the

clauses B which has diff(A,B) = ∅ and we choose the one for which this number
is the smallest. But we count clauses B with different weights. The weight WB is

WB := 1 + |A ∩B|.

For example if A is a 3-clause and |A ∩B| = 2 then WB = 3.
Our test results on 3-SAT problem instances shows that this heuristic provides

an independent blocked clause in 71% of the cases if there is an independent blocked
clause.

In the third version, called IBCR-1248 the weight WB is

WB := 2|A∩B|.

For example if A is a 3-clause and |A ∩B| = 2 then WB = 4.
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Our test results on 3-SAT problem instances shows that this heuristic provides
an independent blocked clause in 73% of the cases if there is an independent blocked
clause.

After this short overview we give more details. First we have to explain the
names of the three heuristics: IBCR-1111, IBCR-1234, and IBCR-1248. The
word “IBCR” is just the abbreviation of Independent Blocked Clause Rule.

We have tested these heuristics on 3-SAT problem instances, where |A ∩B|
can be 0, 1, 2, or 3. The remaining part of the names comes from the values of
weights. In the first heuristic the weight is the constant 1. Therefore, its name is
IBCR-1111. In the second one the weight is defined by 1+|A ∩B|, i.e., the weights
are 1, 2, 3 or 4, respectively. Therefore, its name is IBCR-1234. In the third one
the weights are 1, 2, 4, 8, respectively. Therefore, its name is IBCR-1248.

We present the pseudo-code of the third variant. This algorithm is an O(n2m2)
time method in the worst-case, where n is the number of variables and m is the
number of clauses in the input clause set. It is an O(n2m2) time method, because
we have two loops on clauses and other two on literals.

IBCR-1248
1 function IBCR-1248(S : clause set) : 〈clause, literal〉

2 begin

3 min_Counter := Infinite;

4 // The variable min_Counter stores the minimum value of Counter.

5 // First time should be big enough.

6 for each A ∈ S do

7 a_is_blocked := False;

8 for each a ∈ A while a_is_blocked isFalse do

9 // Here begins the code which is relevant for the heuristic

10 Counter := 0;

11 B_blockes_a := True;

12 for each B ∈ S while B_blocks_a is True do

13 if (diff(A, B) = ∅) then Counter := Counter + 1 ∗ (2|A∩B|);

14 // The weight is 2|A∩B|.

15 if (a /∈ B) then continue ;

16 // Remember, we have to visit all B ∈ S which has a ∈ B

17 // to decide whether a ∈ A is blocked or not.

18 b_blocks_a := False;

19 for each b ∈ B, b 6= a while b_blocks_a isFalse do

20 if (b ∈ A) then b_blocks_a := True;

21 od

22 if (¬b_blocks_a) then B_blocks_a := False;
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23 od

24 if (B_blocks_a) then a_is_blocked := True;

25 if (a_is_blocked and (Counter < min_Counter)) then

26 (min_Counter, min_A, min_a) := (Counter, A, a);

27 fi

28 od

29 od

30 return 〈min_A, min_a〉;

31 end

From this algorithm one can easily construct the other two or even other heuris-
tics.

We can see that this heuristic returns a clause, say C, and a literal, say c. The
clause C is a blocked clause and the literal c is a blocked literal in it. The heuristic
state that C is independent. But this might be false.

If it is true, then it is fine because we can simplify our input clause set by a
sub-model propagation using sm(C, c).

If it is false, then we still can gain something. We can add a shorter clause than
C, because, by the Lucky Failing Property of Sub-Models, we know that C \ {c} is
entailed by the input clause set.

We do not know which case will be applied but we hope that the first one occurs
more frequently.

These heuristics do not use the fact that the clause is blocked or not. There-
fore, we can generalize them very easily for guessing independent-ness of (strongly)
nondecisive clauses.

In the names of these heuristics we use the following acronyms: INCR for In-
dependent Nondecisive Clause Rule; ISNCR for Independent Strongly Nondecisive
Clause Rule.

8. Test results

In this section we describe shortly our java implementation of the simplification
rules and we present the test results we have got on problems from the SATLIB
problem library.

Our java implementation has three classes, Clause, ClauseSet and Satisfiable.
The class Clause contains two BitSet objects, positive and negative. If we represent
a clause where the first variable occurs positively then the first bit of the BitSet
positive is set (1) and the first bit of BitSet negative is clear (0). This means that
our implementation is close to the Literal Matrix View.

This implementation is not competitive with the newest SAT solvers because
it does not use enhanced data structures or techniques like back jumping but it is
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good enough to test whether the simplification rules can be applied on benchmark
problems or not.

We have tested the heuristics on Uniform Random-3-SAT problems [6] from the
SATLIB – Benchmark Problems homepage:
http://www.intellektik.informatik.tu-darmstadt.de/SATLIB/benchm.html

We used the smallest problem set, uf20-91.tar.gz, which contains 1000 problems,
each has 91 clauses and 20 variables and is satisfiable.

We used a Pentium 4, 2400 MHz PC machine with 1024 MB memory to perform
the tests.

Here we present our test results for the problems of uf20-91.tar.gz as a ta-
ble (IBCR: Independent Blocked Clause Rule, INCR: Independent Nondecisive
Clause Rule, ISNCR: Independent Strongly Nondecisive Clause Rule):

IBCR INCR ISNCR from
SND clauses: 601 1128 61122 91000
Problems with SND: 256 465 1000 1000
Independent SND: 77 125 4011 91000
Prob.s with indep. SND: 60 102 951 1000
X-1111: 41 / 60 61 / 102 89 / 951
X-1234: 43 / 60 72 / 102 142 / 951
X-1248: 44 / 60 76 / 102 166 / 951

By “SND clauses” we mean in the column of Independent Blocked Clause Rule
blocked clauses, in the next column nondecisive clauses, and in the next column
strongly nondecisive clauses. The column “from” shows how many clauses and
clause sets, respectively, do we have in total.

The line X-1111: 41 / 60 61 / 102 89 / 951 means that: IBCR-1111
successfully guesses 41 times an independent blocked clause from the 60 cases
where we checked whether we have independent blocked clauses; INCR-1111 is
successful 61 times from 102; and ISNCR-1111 is successful 89 times from 951.

Now we give the same table but the results are given in percentages.

IBCR INCR ISNCR from
SND clauses: 0.66% 1.23% 67.16% 91000
Problems with SND: 25.6% 46.5% 100% 1000
Independent SND: 0.08% 0.13% 4.4% 91000
Prob.s with indep. SND: 6% 10.2% 95.1% 1000
X-1111: 68.334% 59.8% 9.35%
X-1234: 71.667% 70.58% 14.93%
X-1248: 73.334% 74.5% 17.45%

We can see that the X-1248 is the best heuristic, but still it could guess an
independent strongly nondecisive clause only in 17% of the cases where we know
that there are some.
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It is so because it is very hard to guess independent clauses. We have better
results in the other two cases because there are a lot of instances where we have
only one or two independent blocked or nondecisive clauses. One can see that only
the 0.66% of clauses are blocked while 67% are strongly nondecisive.

We believe that these simplifications are very useful, because if it turns out
that the selected blocked clause is not independent, after propagating a sub-model
generated from it, then we can still, by the Lucky Failing Property of Sub-Models,
add a shorter clause to our clause set.
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Abstract

The aim of object-oriented conception is to make sure that the program
is well-structured, so as to become perspicuous; it can be extended easily, so
that it could be maintained more easily; and its reusability can be increased
in order to be modularized. There are lots of measuring methods, by which
the realization of the mentioned aims is measured. The measuring methods
are the metrics that give us indicators showing the complexity of the program
structure.

Can the existing object-oriented metrics really indicate the structural
quality of the program? As we know, these metrics examine structural prop-
erties like the number of inheritance levels, the number of subclasses, or the
number of methods, which can not be the basis of real quality examinations.
The reason of this is that the aim of the object-oriented conception is not
clarified. In order to realize the aims of object-oriented technology, object-
oriented paradigms should be reinterpreted.

According to our new conception object-oriented methodology is based
on the elimination of decision repetitions, that is, sorting the decisions to
class hierarchy, so that the data structure and methodology of the decision
options could be determined by the subclasses of the given class. When
sorting the decisions and decision options to a class and its subclasses, only
the first decision case will be executed, which will be archived and enclosed
by the instantiation of one of the subclasses. For the following decision cases
the archived decision result can be used without knowing which decision
option was used, that is, which subclass was instantiated, as it is enclosed by
using the type of the parent class, except the necessary data structure and/or
methodology is decision option specific.

There are two states of decisions depending on the place of their defining:
the decision options and their data structures and methodologies can be de-
fined in the method, but the sorted decision can be defined by a class and its
subclasses.

95
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In order to support the practical benefit of our conception, we are going
to show how decisions can be formalized (that is, whether the decision states
are defined in a method or by a class hierarchy) based on JML. Using the
JML formalization those cases should be identified where decisions can be
sorted, thus the elimination of decision redundancy is suggested.

According to our new conception the aim of object-oriented technology is
the elimination of decision repetitions, which can be realized by sorting de-
cisions. Therefore inheritances are the abstract definition forms of decisions,
so the inheritances can be interpreted as decision abstractions.

1. Motivation

Object-oriented programming is a programming methodology. The programs
based on it organize the collaborations of objects that are instances of one of the
classes. Classes are built in class-hierarchies, where the connections between the
classes are realized by inheritance relationships. [1]

The base paradigms of object-oriented technology are encapsulation [3, 6], in-
heritance [3, 4, 6], polymorphism [3, 6] and message-passing [3, 4, 6]. Encapsulation
means that the data structures and the methodology are defined together, enclos-
ing them in units as objects. Encapsulated data structures and methodology can
be defined in classes, the instances of which are called objects. Modularized con-
struction can be realized with the help of encapsulation, and as a result – if the
methodology of one of the objects is changed – there are no side-effects in other
objects. [6] Inheritance means that the data structures and the methodology, de-
fined in a class, can be inherited by its subclasses. Subclasses can define new data
structures and methods as complements of the inherited properties [4, 5] and can
override inherited data structures and methodologies. Polymorphism means that
the classes’ methods can be overridden by their subclasses, so the method, which
gets the control, is selected just in runtime (Late Binding). [3] Late Binding –
according to another terminology – means that an object sends similar messages
to different objects (classes and their subclasses), which results in the execution of
a different code. [6]

There are lots of metrics in order to control the programs’ quality. The quality
of the design, the program and the efficiency of the testing can be checked by
using these metrics. [4] The metrics defined in [2] (MOOD) and [4] are based on
object-oriented paradigms. Accordingly, these metrics are used as a base concept
of encapsulation (MHF[2], AHF[2]), inheritance (MIF[2], AIF[2], DIT[4], NOC[4]),
polymorphism (POF[2]), message-passing (COF[2], LCOM[4], CBO[4]) in order to
check the software quality.

But the metrics based on the base paradigms can be used for checking the
quality subsequently. If the result of the checking shows that structure of the
program is bad, it can be repaired by reconstruction. Using the solution in [7]
reconstruction can be solved automatically based on inheritance checking.

By supporting the work of the program designer in the designing phase lots of
designing failures could be avoided, and designing experience as designing ‘recipes’
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could be reused. According to this concept, the creation of quality programs is
guaranteed by rules based on designing experience. These generic recipes are De-
sign Patterns [8], which is used to create a quality design and program. Are there
any appropriate answers for the aims of Design Patterns beyond the general de-
scriptions? We do not think there are, as the profession tried to define the rules of
the programs’ quality by collecting Design Patterns, but there are no clear answers
for what the main concepts of Design Patterns are.

What is the reason for the deficiency of object-oriented metrics and why are
not there any clear answers for the aims of Design Patterns? The answers can
be found in [11]. According to that conception, the grounds for the answers can
be found in the existing interpretation of object-oriented paradigms that block
the extended examination of object-oriented methodology. Between the metrics
– which are based on the interpretations of these paradigms – and the program
quality there is no obvious connection, because these metrics depict the complexity
of the program. Nevertheless, there are no clear answers for the aims of Design
Patterns based on the existing interpretations of paradigms.

In order to resolve the problems described in [11], a new interpretation of the
basic object-oriented paradigms is described, by which the basic concepts of object-
oriented methodology can get another approach. According to this, we give new
options for controlling the program quality and for repairing the programs as new
guidelines are realized (Introduction, [11]) that improve the structures of programs
and make their maintenance.

The new conception gives Design Patterns a clear interpretation. Accord-
ingly, Design Patterns give us recipes for accomplishing the requirements of well-
structured programs by reducing the number of decision repetitions. So Design
Patterns give us recipes how decision repetitions can be eliminated in different
decision construction cases [11].

In order to examine program structures and the performance of the guidelines
of well-structured programs, we need a formalization tool that examines the defini-
tions of decisions. Formal examinations are based on the Java programs’ behaviour
interface specification language – JML [12, 13, 14, 15]. JML specifies the data struc-
tures and the methodology of decision options based on logical expressions. JML
formalized decisions have already been examined according to the decision-based
conception and the guidelines of well-structured programs.

2. Introduction

Based on the decision-based interpretation of object-oriented concept [11], in
this paper a new formalization method of decisions is realized using JML.

In this section, according to [11], the new interpretation of object-oriented con-
cept is shown.

The decisions of the program code decide about the data structure and function-
ality are specified in the decisions. The main concept of object-oriented method-
ology is the elimination of decisions’ repetition by sorting them to a “common
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place”. This “common place” is a class with subclasses, so decision repetition can
be eliminated by class hierarchy. After sorting the decisions, the decision about
the necessary functionality and data structure is executed only once. Decision
archiving is realized by the instantiation of the subclass with the appropriate func-
tionality and/or data structure. The result of the decision (the archived decision)
- as an instance of the appropriate subclasses - can be used at other decision places
without having any specific information about it. Accordingly, the decisions can
be enclosed in class hierarchy.

Decision cases are important parts of programs, where the appropriate decision
option can be decided by using the actual values.

In order to ensure that a program is well-structured, we should note the follow-
ing:

• The methodology and/or the data structure of the decision options have to be
defined just once, so the code of the decision options will be defined just once,
unless sorting the decisions is impossible. It is important to consider man-
ageability, because the introduction of a new decision option can be solved
easily if it can only be built in one place of the program.

• Decisions having equivalent decision predicates but differing in their decision
option definitions should not reoccur. This case is different from the previ-
ous one, as though the decision predicates are equivalent, the methodology
and/or the data structures of the decision options are different. In these cases
the decisions can be contracted too, so the definitions of the different deci-
sion options can be defined by contracting them in the same class hierarchy
according to the decision predicates.

• Decisions should not reoccur, so a decision should be executed just once
during the same running, if the predicates of decisions are equivalent and
the decision options define the same data structure and functionality. The
elimination of decision repetitions has two aspects:

– The result of the decision - as the data structures or/and the method-
ology of the decision options - can be used several times.

– The result of the decision can be used later more times, but a new
instance of the structures or/and methodology of the decision options is
created each time. The archived decision can be used later for creating
an instance of the decision options.

In order that the analysis could be realized based on the decisions, it is im-
portant how the basic paradigms of object-oriented technology (inheritance, poly-
morphism, encapsulation) and its basic tools (class hierarchy, aggregation) can be
joined to the decision based concept.
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2.1. Inheritance as decision abstraction

Inheritance means that the data structure and the methodology defined in a
class can be inherited by its subclasses. The subclasses can define new data struc-
tures and methods as complements of the inherited properties [4, 5] and can over-
write the inherited data structure and methodologies.

The decision can choose the running program code and the data structure. In
order that a decision could be archived, it has to be sorted, which means that
the data structure and methodology of the decision options have to be defined
in a class hierarchy, as a parent class and its subclasses. Derivation/inheritance
ensures the enclosing and archiving of the decision to the class hierarchy, therefore
the definitions of the decisions can be contracted and decision repetitions can be
eliminated.

According to this interpretation class hierarchy – the class with its subclasses –
based on inheritance is the abstract form of the decision.

If the decision is defined in a class hierarchy, the following is realized:

• Elimination of the code repetition, which defines the decision options, so the
conditions of the decision options can be defined just one time.

• Archiving the decision, so that the result of the decision could be used for the
next occasions, unless the required data structure or methodology is specified
by one of the decision options only.

• Enclosing the decision. The result of the decision is not known in the next
decision cases, unless the required data structure or methodology is specified
by only one of the decision options.

• By introducing a new subclass, decision options can be extended easily. When
creating a new subclass, only the first decision case has to be fit for handling
the new decision option, because the decision will be enclosed on the next
occasions, unless the required data structure or methodology is specified by
only one of the decision options.

As it can be seen, if the data structure or/and the methodology is specified
by just one of the decision options, the advantages of decision sorting can only be
realized partially. The forceful usage of polymorphism can completely realize the
advantages of decision sorting from the point of view of inheritance.

2.2. Polymorphism as decision enclosing

If the decision is realized in the first decision case, one of the subclasses will be
instantiated based on the chosen decision option. The instance of the appropriate
subclass archives the decision and the visible type of the instance will be the parent
class of the subclass. With this, the enclosing of the decision can be realized,
because the result of the decision can be used without of the knowledge of the
decision on the next occasions.
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2.3. Encapsulation

Decision options can be defined by data structure and methodology. The deci-
sion is defined in a method, if the appropriate If-Else command’s blocks define the
data structure and the methodology of the decision options. If the decision is de-
fined in an abstract form sorted in class hierarchy, the decision options are realized
in the subclasses. If there is a change in the data structure and the methodology
of the decision option, no side-effects occur in other decision cases and other deci-
sion options, accordingly the decision option can define the data structure and the
methodology by a subclass enclosing them (the data structure and the methodol-
ogy).

2.4. Aggregation as dynamic decision embedding

By aggregation the sorted decision can be referred to. If there is a decision case,
in which the appropriate decision option is chosen (with the proper data structure
and methodology), and next time the operations are executed based on the chosen
methodology and data structure as the result of the decision, the sorted decision
can be used in the decision cases. The result of the decision will be referred to by
aggregation.

When we talk about aggregation, we have to know that it is the tool of relating
decisions.

In the following sections of the paper we will show how the described decision
based conception can be supported by JML. In Section 3 the JML specification
language is described, and on the basis of this, Section 4 introduces the formal-
ization method of the two states of the decisions (defined by method or by class
hierarchy). In the final part of the paper, in Section 6, an example shows how the
decisions can be formalized before and after decision sorting.

3. JML

JML – Java Modelling Language is a behaviour interface specification language
[12, 13], by which the syntactical interface and the behaviour of Java programs is
specified. [12]

The syntactical interfaces are the Java interfaces and the programmer interfaces
of Java programs, that is, the signatures of the methods, the names and types of
the variables. The behaviour of the interfaces can be specified by JML annotations,
which define how classes and methods can be used. [12]

The JML specification language combines the Eiffel-style syntax with the model-
based semantics as in VDM and Larch. Eiffel-style assertions are extended to use
Java expressions. JML combines this with the model-based approach of VDM and
Larch. [13, 15]
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Accordingly, JML contains many state-based specification languages’ core spec-
ification constructions, for example, pre- and post-conditions, assertions, invari-
ants. These constructions are not able to realize the formal modular verification of
object-oriented programs. Therefore, JML uses extra constructions such as frame-
properties, data groups, ghost and model variables. [14]

JML specifications can either be written in separate – specification – files or as
annotations in Java program files (the Java compiler interprets these annotations
as comments, which are ignored by the compiler). Specification files and their spec-
ifications can be organized into inheritance-hierarchies, which make the creation of
the well-structured specification easier.

There are two kinds of specification cases in JML: Lightweight and Heavy-
weight specifications. Lightweight specification cases are useful when giving par-
tial specifications, but if the complete specification is necessary, we should use the
heavyweight specification option.

In the following part the main concepts of JML specification constructions are
described, in order that the Reader could interpret the examination of the decision-
based extension of object-oriented concepts by JML more easily.

There are two kinds of specification constructions of JML:

• Behaviour specification constructions, such as ‘assert’, ‘assume’, ‘require’, . . .

• Specification constructions of classes and interfaces, such as invariants, mod-
els, . . .

3.1. Behaviour specification constructions

The basic constructions of JML are the pre- and post-conditions of the com-
mands and methods, which determine the program states before and after the
executions of the commands or methods.

The pre- and post-conditions can be described as a contraction between a
method (its implementer) and its caller (user) as follows:

• Pre-condition:

– The method or the command assumes that the pre-condition has been
realized.

– The caller of the method or the command ensures the realization of the
pre-condition.

• Post-condition:

– The method or the command ensures the realization of the post-condi-
tion.

– The caller of the method or the command assumes the realization of the
post-condition.
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The appearances of the pre- and post-conditions in JML specification are:

• Conditions in the methods:

– ‘Assume’: Assertion that the program requires.

– ‘Assert’: Assertion that the program ensures.

• Conditions between methods:

– ‘Requires’: It specifies the pre-condition of the method.

– ‘Ensures’: It specifies the post-condition of the method.

The pre- and post-state of the variables can be distinguished as follows:

• Pre-state: The starting state of the variables is signed by enclosing the vari-
able name with the ‘\old()’ expression.

• Post-state: The ending state of the variables is signed by the variable name.

The variables with modified values in the methods are specified by assignable
annotations such as frame conditions, which can define the “frame” of the possi-
ble state-transitions. JML behaviour specification constructions are based on the
requirements of Hoore calculus.

3.2. Specification of interfaces and classes

JML can specify invariants, such as general conditions, that help to narrow the
state-space of classes and interfaces.

The initial conditions of the variables can be specified.
History constraint specifies the relations between pre- and post-states, which

are realized by every state-transition.
The data group is a set of fields (locations). The data-groups, such as the

grouped fields, are the basic-units of the states and the state-transitions.
JML has an abstract construction. It is the model variables that can be used in

the model specification. The ‘represents’ clause can join the model variable with
the implementation variable as its implementation representation.

4. Decision formalization

In order to formalize the decisions of object-oriented programs, the formal-
ization of the data structure and the behaviour of the programs can be solved,
because it is necessary to compare the data structure and the behaviour of decision
options. The analysis of decision predicates [11] is necessary for the examination
of redundant decisions.

JML has constructions to realize behaviour specification and the specification of
data structures. Because the behaviours are specified by logical formulae as post-
conditions, the equivalence of the decisions’ decision options can be examined based
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on the data structures and the behaviours. Based on the formalized behaviours as
post-conditions, the examination of the decision-predicated are realized, too.

In this section the formalization of the decisions by JML is described. We
describe the JML formalization of one-level decisions and the formalization of two-
or more-level decisions.

In order to show the connections between the two states of the decisions (the
decision is defined by a method or by class hierarchy), we describe the JML for-
malization of non-sorted and sorted decisions. Based on the formalized sorted
decisions, we can see how the result of the first decision case is in-closed, archived,
which can be reused further on, in other decision cases of that decision.

4.1. Formalization of non-sorted decisions

If the decision is not sorted, the methodology and the data structure of the
decision options are defined in the method, not in the class hierarchy.

The pre-conditions and the post-conditions of the behaviours and the conse-
quences of the decision options are defined in the specification of the method,
where the definition of the decision options is separated by the keyword ‘also’.

/*@

;condition&&...&&condition&&condition&&...&&conditionensures@

;v,,v,v,...,  vassignable@

 //D);(p!requires@

also@

;condition&&...&&condition&&condition&&...&&conditionensures@

;v,,v,v,...,  vassignable@

 //D;prequires@

avior  //Dnormal_behpublic@*/

mli1

fea1

L1

kji1

cba1

L1

2

1

The two decision options of the decisions are separated by the keyword ‘also’.
The pre-conditions of the decision options are p1, !p1. The pre-condition de-

termines the appropriate decision option, by which the appropriate data structure
and behaviour is realized. The ‘assignable’ assertion defines the data structure,
which is modified by the decision option. The behaviour of the decision option is
defined by ‘ensures’ assertions as post-conditions.

The data structures and the behaviour of the decision options have common
and decision option-specific parts. It is important, because if we sort the decisions,
the common parts of the decision options are specified by the parent class in the
class hierarchy, and the decision option specific parts are defined by the subclasses.
The data structures of decision options are:

v1, . . . , va – Variables, which are modified by all decision options.
vb, . . . , vc – Variables, which are modified in DL1 decision option.
ve, . . . , vf – Variables, which are modified in DL2 decision option.

The behaviours of the decision options are:
condition1 && . . . && conditioni – Common behaviours of the decision options.



104 Sz. Márien

conditionj && . . . && conditionk – Behaviour, which is specified by DL1 decision
option.

condition1 && . . . && conditionm – Behaviour, which is specified by DL2 decision
option.

Formalization of the decision which contains other decisions (Complex decision).

/*@

|}@

//D;condition&&...&&condition&&condition&&...&&condition@

 //D&&condition&&...&&condition&&condition&&...&&conditionensures@

 //D;v,,v,v,...,   v@

//D;v,,v,v,..., vassignable@

 //D);(p!requires@

also@

//D;condition&&...&&condition&&condition&&...&&condition@

 //D&&condition&&...&&condition&&condition&&...&&conditionensures@

 //D;v,,v,v,...,   v@

 //D;v,,v,v,..., vassignable@

 //D;prequires@

{|@

  //D);(p!requires@

also@

|}@

//D;condition&&...&&condition&&condition&&...&&condition@

 //D&&condition&&...&&condition&&condition&&...&&conditionensures@

 //D;v,,v,v,...,    v@

 //D,v,,v,v,...,  vassignable@

  //D);(p!requires@

also@

//D;condition&&...&&condition&&condition&&...&&condition@

 //D&&condition&&...&&condition&&condition&&...&&conditionensures@

 //D;v,,v,v,...,    v@

  //D,v,,v,v,...,  vassignable@

  //D;prequires@

{|@

  //D;prequires@

Dnavior  //Dnormal_behpublic@*/

2

2

2

2

2

1

2

1

2

1

2

2

1

2

1

2

1

1

1

1

1

1

L2yxut

L1sro1

L2lkhg

L1fea1

L22

L2wvut

L1sro1

L2jihg

L1fea1

L22

L11

L2yxut

L1qpo1

L2lkhg

L1cba1

L22

L2wvut

L1qpo1

L2jihg

L1cba1

L22

L11

12 i
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The decision options (D1L1
,D1L2

) of D1 decision contain the decision options
(D2L1

,D2L2
) of D2 decision. Complex decisions can be specified just like simple

decisions. There are common parts and decision option specific parts of the decision
options’ behaviours and data structures. The common and the decision option
specific variables and conditions of behaviours – as it can be seen in the specification
of simple decisions – are signed by indexes.

4.2. Formalization of sorted decisions

If the decision is sorted, the decision is specified by the parent class and its
subclasses. The parent class defines the common parts of the decision options, and
the decision option specific parts are defined by the subclasses. The parent class as
a type can archive the decision result of the decision case, accordingly, the variable
that encloses the decision gets the parent class type (in this case its type is ‘o’).
The further decision cases can use the o-variable – which encloses the decision – in
order to achieve the functions of the decisions and decision options.

4.2.1. One-level sorted decisions

C_D
v_1

v_a

C_D_L1
v_b

v_c

C_D_L2
v_e

v_f

Diagram 1. CD, CDL1
, CDL2

class-hierarchy by UML diagram [9].

The JML formalization of sorted decision on the place of decision-sorting:

/*@

;condition&&...&&condition&&condition&&...&&conditionensures@

o;assignable@

  //Dp! // ;Cinstanceoforequires@

also@

;condition&&...&&condition&&condition&&...&&conditionensures@

o;assignable@

  //Dp // ;Cinstanceoforequires@

avior  //Dnormal_behpublic@*/

mli1

L1D

kji1

L1D

22L

11L

There are not many differences between the formalizations of the decisions’
two states (the sorted and the non-sorted states), because the formalization of the
sorted decision shows the specification of decision options, too. So the decision
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options of the “enclosed” decision are specified in the JML formulae of the decision.
It is useful, because it shows the decision options of enclosed decisions.

In the first decision case, the decision predicate stays in its original form, but
in the other decision cases – according to the decision based conception – the type
of the object determines the behaviour of the decision (such as the behaviour of
the appropriate decision option).

By sorting the decision, the behaviours of the decision options are separated
in two subclasses, and the common parts are sorted into the parent class. The
common and the decision option specific parts are united providing the appropriate
behaviour in the decision cases.

The JML formalization of the parent class of the sorted decision is as follows:

/*@

;condition&&...&&conditionensures@

v_a;  v_1,assignable@

avior  //Dnormal_behpublic@*/

i1

The parent class provides only the common behaviour of the sorted decision.
The subclasses specify the decision option specific parts of the sorted decision

completing the common behaviour:

/*@

;condition&&...&&conditionensures@

v_c;  v_b,assignable@

aviornormal_behpublic@

 //Dalso@*/

kj

L1

/*@

;condition&&...&&conditionensures@

v_f;  v_e,assignable@

aviornormal_behpublic@

 //Dalso@*/

ml

L2

As it can be seen, if the decision is sorted and defined by class-hierarchy, the de-
cision formalization is transformed. The following differences can be found between
the formalization of the sorted and non-sorted decisions:

• Predicates of the decision options: The first decision case keeps the original
p1, !p1 decision predicates. The result of the first decision case is archived
by an instance of one of the subclasses, and it is enclosed by the type of the
parent class in the class hierarchy. The archived decision will be reused by
the o instanceof CDL1

, o instanceof CDL2
predicates on the next decision cases.

• The data-structure which is modified by the decision option will be specified
by the keyword ‘assignable’:

– The data-structure is the content of the “o” object, which contains the
common data structure of the parent class and if the “o” object is the
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instance of one of the subclasses, the content is completed with the data
structure of the subclass.

• The variables will be referred to in the post-conditions of the decision options
(in the subclasses) as it can be seen in the following list:

fDeDL

cDbDL

)o).v((C,,)o).v(C(D

)o).v((C,,)o).v((CD

2L2L2

1L1L1

The decision option specific variables of the “o” object – the type of which is
the parent class – are achieved by type-forcing.

Accordingly, the object – standing for the parent class in the class hierarchy
– encloses the result of the decision. Its decision option specific options can
be achieved as already shown.

It is not clear why the usage of type-forcing in the ‘assignable’ assertions is
faulty, but in the post-conditions the usage of type-forcing is required if the data
structure of one of the subclasses is required.

4.2.2. More-levels, complex sorted decisions

C_D1_L1

v_b

v_c

C_D1_L2

v_e

v_f

C_D2_L1

v_i

v_j

C_D2_L2

v_k

v_l

C_D1

v_1 : C_D2

v_a

C_D2
v_g

v_h

v_1

Diagram 2. CD1 , CD2 class-hierarchies by UML diagram [9].

The JML formalization of complex sorted decision on the place of decision-sorting:

 //D;Cinstanceofo.vrequires@

also@

//D;&condition&...&&condition&&condition&&...&&condition@

 //D&&condition&&...&&condition&&condition&&...&&conditionensures@

 //Do;assignable@

 //D;Cinstanceofo.vrequires@

{|@

p //D;Cisntanceoforequires@

Dnavior  //Dnormal_behpublic@*/

22L2

1

1

1

11L2

11L1

L2D1

L2wvut

L1qpo1

L1

L2D1

1L1D

12 i
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/*@

|}@

//D;&condition&...&&&condition&condition&&...&&condition@

 //D&&condition&&...&&condition&&condition&&...&&conditionensures@

o;assignable@

 //D;Cinstanceofo.vrequires@

also@

//D;&condition&...&&&condition&condition&&...&&conditionl@

 //D&&condition&&...&&condition&&&condition&...&&conditionensures@

o;assignable@

 //D;Cinstanceofo.vrequires@

{|@

p! //D;Cisntanceoforequires@

also@

|}@

//D;condition&&...&&&condition&l&condition&...&&condition@

 //D&&&condition&...&&condition&&condition&&...&&conditionensures@

oassignable@

1

2

22L2

1

2

11L2

22L1

2

1

L2yxut

L1sro1

L2D1

L2wvut

L1sro1

L2D1

1L1D

L2yxut

L1qpo1

4.3. The conditions of well-structured programs based on
JML specification

In the following part we describe the facilities of the JML specification of deci-
sions, by which the decision repetitions and the redundant decision definitions can
be detected. The full description of these facilities is out of scope of this paper, in
the following we just describe the basis of this methodology:

In the Introduction part the following guidelines of a well-structured program
were described:

• The methodology and/or the data structure of the decision options have to
be defined just once, so the code of the decision options will be defined just
once, except it is impossible to sort decisions.

If the data structures and methodologies of decisions are equivalent, these
decisions have to be sorted in the same class-hierarchy. By using JML speci-
fication, decisions are equivalent when the data structures of the decisions –
which are specified by “assignable” – are equal, and the methodologies of the
decisions as the post-conditions of the decision options (specified by “ensures”)
are equivalent. The decision can be the extension of another one. In this case,
one of the data structures is a subset of the other one and there is an impli-
cation relation between the postconditions. In this case, the examination of
decision predicates is not important.
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• Decisions with equivalent decision predicates and different data structures
and/or methodologies should not be repeated. In this case, the data struc-
tures and the methodologies of the JML specifications of decisions are not
equal, but the decision predicates – specified by “requires” – are equivalent.
The decision options have to be contracted by sorting them into the same class
hierarchy, which will be the common decision abstraction of the contracted
decisions. (This case is shown in the Example Code.)

• Decision cases should not be repeated. One decision should be executed
just once. (It is the union of the previously mentioned two cases, because
the definitions of the decision options are equal, and the decision predicates
are equivalent, too.) In this case, the JML formulae of the decisions’ data
structures and the methodologies are equal and the decision predicates of the
decisions (specified by “requires”) are equivalent, too.

5. Example

The example shown in this section contains decision-repetition. These decisions
have equivalent decision predicates and different data structures, methodologies.
According to the previously mentioned conditions of well-structured programs these
decisions can be contracted and sorted into class hierarchy, by which the decision-
repetition is eliminated.

In the example, the functionality of the purchase is realized: Paying – By Cash/
By Bankcard

The decision about paying mode will be reused later more times. The paying
mode determines the parameters, which get as program arguments and it deter-
mines the printing data.

The example is based on Java syntax [10].

The two levels of the example code – before and after decision sorting – are
also specified by JML, therefore the JML formalization of the two states can be
examined and compared.

Accordingly, the Pay class and the Pay class-hierarchy are formalized by JML,
by which the differences of the formalizations between the not-sorted and sorted
decisions can be described.
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5.1. Before decision sorting

Diagram 3. The two classes of the example before decision sorting
by UML diagram [9].

package hu.decision.example; 

//@ model import org.jmlspecs.models.*;

/** Printing the payment data.

*/

public class Purchase { 

/*@ public static pure model boolean parseable( String s ) {

 @ try { int d = Integer.parseInt(s); return true; }

 @ catch (Exception e) { return false; }}

 @*/

/*@ public static pure model Pay desidePayingType(String[] args) {

 @  return new Pay(args);

 @}

 @*/

/** Payment data - according to the payment type - is got

* using the instance of Pay class

*/

public Pay pay;

//@ instance invariant pay != null;

public static void main(String[] args) { 

  Purchase purchase=new Purchase(); 

  purchase.init(args); 

//Printing bill.

  purchase.printBill(); 

 } 

/** Checking the number of arguments and creating the Pay instance,

*by which the payment data is printed.

*/

/*@ private normal_behavior

 @  requires args==null||args.length<4;

 @  assignable \nothing;

 @  ensures false;

 @ also

 @ private normal_behavior

 @  requires args.length>=4&&pay==desidePayingType(args)&&

 @   pay instanceof Pay ;

 @ {|

 @  {|

 @   requires args[0].equals("true")&&parseable(pay.args[1])&&
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 @    parseable(pay.args[2])&&parseable(pay.args[3]);

 @   assignable pay, pay.payByCash, pay.billNumber,

 @    pay.requiredAmount, pay.receivedAmount, System.out;

 @   ensures pay.payByCash==true && 

 @    pay.billNumber==Integer.parseInt(args[1])&&

 @    pay.requiredAmount==Integer.parseInt(args[2]);

 @   ensures pay.receivedAmount==Integer.parseInt(args[3]);

 @  also

 @   requires args[0].equals("false")&&parseable(pay.args[1])&&

 @    parseable(pay.args[2]) && parseable(pay.args[3]);

 @   assignable pay, pay.payByCash, pay.billNumber, 

 @     pay.requiredAmount, System.out;

 @   ensures pay.payByCash==false &&

 @    pay.billNumber==Integer.parseInt(args[1])&&

 @    pay.requiredAmount == Integer.parseInt(args[2]);

 @   ensures pay.cardNumber == args[3];

 @  |}

 @ also

 @  requires !parseable(pay.args[1])||!parseable(pay.args[2])||

 @   !parseable(pay.args[3]);

 @  assignable \nothing;

 @  ensures false;

 @ |}

@*/

private void init(String[] args) 

 { 

//If there are not enough arguments.

if(args == null || args.length < 4 ){ 

   System.err.println("There are not enough arguments!");

   System.exit(-1);

} 

try{

//Creating the Pay object by which the payment behaviours are realized.

pay = new Pay(args); 

} 

catch (java.lang.NumberFormatException nfe) 

  { 

   System.err.println("The format of Arguments is not appropriate!");

   System.exit(-1);

  } 

 } 

/** Based on the pay instance payment data is printed.

*/

/*@ private normal_behavior

 @  requires pay.payByCash==true;

 @  assignable System.out;

 @  ensures (* Prints the Bill Number, Required Amount,

 @    Received Amount*);

 @ also

 @ private normal_behavior

 @  requires pay.payByCash==false;

 @  assignable System.out;

 @  ensures (* Prints the Bill Number, Required Amount,

 @    Card Number*);

 @*/

private void printBill(){ 

  String payInfo =pay.getPayInfo();

  System.out.println("Payinfo: "+ payInfo); 

 } 

}

/*-----

package hu.decision.example; 

--------------------------------------------------------------*/

//@ model import org.jmlspecs.models.*;

/** Determining payment type (as by cash or by bankcard).
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*/

public class Pay { 

/*@ public static pure model boolean parseable( String s ) {

 @ try { int d = Integer.parseInt(s); return true; }

 @ catch (Exception e) { return false; }

 @ }

 @*/

public String[] args;

//@ invariant args!=null && args.length==4;

public long billNumber = 0; 

//@ private instance initially billNumber == 0;

public boolean payByCash=true;

//@ private instance initially payByCash == true; 

public int requiredAmount=0;

i e instance initially requiredAmount == 0;//@ pr vat

public int receivedAmount=0;

ivate instance initially receivedAmount == 0;//@ pr

public String cardNumber="";

//@ private instance initially cardNumber == "";

/** Determining payment type as by cash or by bankcard.

* Getting the bill number and the required amount is

* necessary in every case.

*/

/*@ public behavior

 @ {|

 @  requires args[0].equals("true");

 @  assignable args, payByCash, billNumber, requiredAmount, 

 @   receivedAmount;

 @  ensures payByCash==true &&

 @   billNumber==Integer.parseInt(args[1])&&

 @    requiredAmount == Integer.parseInt(args[2]);          

 @  ensures receivedAmount == Integer.parseInt(args[3]);

 @ also

 @  requires !parseable(args[1])||!parseable(args[2])||

 @   !parseable(args[3]);  

 @  assignable args, payByCash, billNumber, requiredAmount; 

 @  ensures false;

 @  signals_only java.lang.NumberFormatException;

 @ |}

 @ also

 @ public behavior

 @ {|

 @  requires args[0].equals("false");

 @  assignable args, payByCash, billNumber, requiredAmount,

 @   receivedAmount, cardNumber;

 @  ensures args==in_args && payByCash==false && 

 @   billNumber==Integer.parseInt(args[1])&& 

 @   requiredAmount == Integer.parseInt(args[2]);          

 @  ensures cardNumber == args[3];

 @ also

 @  requires !parseable(args[1])||!parseable(args[2]);

 @  assignable args, payByCash, billNumber, requiredAmount;

 @  ensures false;

 @  signals_only java.lang.NumberFormatException;

 @ |}  

      @*/

public Pay(String[] in_args) throws NumberFormatException 

 { 

this.args=in_args;     

if(args[0].equals("true"))

y Cash =true;pa By

else if(args[0].equals("false"))

payByCash =false;

  System.out.println("Pay By Cash?:(true/false) "+payByCash);

billNumber = Integer.parseInt(args[1]);
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  System.out.println("Bill Number:(Number) "+billNumber);     

requiredAmount = Integer.parseInt(args[2]);

  System.out.println("Required Amount:(Number) "+requiredAmount);

   

if (payByCash)

   payByCash(); 

else

   payByBankcard(); 

 } 

/** If the customer pays in cash, then getting the

* received amount is necessary.

*/

/*@ private normal_behavior

 @  requires parseable(args[3]);

 @  assignable receivedAmount;

 @  ensures receivedAmount == Integer.parseInt(args[3]);

 @ also

 @ private exceptional_behavior  

 @  requires !parseable(args[3]);

 @  assignable receivedAmount;

 @  signals_only java.lang.NumberFormatException;

@*/

private void payByCash() throws NumberFormatException 

 { 

receivedAmount = Integer.parseInt(args[3]);

  System.out.println("Received Amount:(Number) "+receivedAmount);

 } 

/** If the customer pays by bankcard, then getting

* the card-number is necessary.

*/

/*@ private normal_behavior

 @ assignable  cardNumber;        

 @ ensures  cardNumber == args[3]; 

@*/

private void payByBankcard() 

 { 

cardNumber = args[3];

  System.out.println("cardNumber:(String)"+cardNumber);

 } 

/** Printing payment data according to payment type.

*/

/*@ public normal_behavior

 @  requires payByCash == true;

 @  assignable \nothing;

 @  ensures \result == "Bill Number: "+String.valueOf(billNumber)+

 @   "; Required Amount: "+String.valueOf(requiredAmount)+

 @   "; Received Amount: "+String.valueOf(receivedAmount);

 @ also

 @ public normal_behavior

 @  requires payByCash == false;  

 @  assignable \nothing;

 @  ensures \result == "Bill Number: "+String.valueOf(billNumber)+

 @   "; Required Amount: "+String.valueOf(requiredAmount)+

 @   "; Card Amount: "+String.valueOf(cardNumber);

@*/

public String getPayInfo() 

 { 

if Cash) (payBy

return "Bill Number: "+String.valueOf(billNumber)+

"; Required Amount: "+String.valueOf(requiredAmount)+

 Received Amount: "+String.valueOf(receivedAmount);";

else

return "Bill Number: " + String.valueOf(billNumber)+

"; Required Amount: "+ String.valueOf(requiredAmount)+
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"; Card Number: " + String.valueOf(cardNumber);

 } 

}

The decision predicate of the decision about getting paying data is realized in the
Pay constructor as follows:

@  requires args[0].equals("true");

 @   … 

 @ also

 @  requires args[0].equals("false"); 

 @   … 

The decision predicate of printing data decision in the getPayInfo method is equiv-
alent with the predicate of the decision about getting paying data:

@  requires payByCash == true;

 @   … 

 @ also

 @  requires payByCash == false; 

 @   … 

The decision predicate of the decision about printing data (payByCash variable) is
evaluated in the decision options of the other decision (about getting paying data)
based on its decision predicate (args[0].equals("true")). Therefore the two
decision predicates are eqivalent, accordingly the two decisions can be contracted
sorting them into the same class hierarchy.

5.2. After decision sorting

The decisions about payment type are sorted into the class hierarchy, where
the different paying modes are defined in the subclasses as the decision options. If
somebody pays in cash, the number of the bankcard and the transaction number
are not required, but the paid and received amounts are required. In case of
paying by bankcard, the received and paid amounts are not required, but the
bankcard number and the transaction number are needed. After the executing the
contraction of the equivalent decisions of the paying mode (which were in the ‘Pay’
and the ‘getPayInfo’ methods), the decision about paying mode will be executed
just once. This will be enclosed and archived by the ‘Pay’ class hierarchy and the
enclosed decision will be reused on the next occasions.

Pay

billNumber : Long

requiredAmount : int = 0

Pay()

<<abstract>> getPayInfo()

<<Abstract>>Purchase

pay : Pay

printBill()
main()

Purchase()

pay

PayByCash

receivedAmount : int = 0

PayByCash()

PayByBankcard

cardNumber : String

PayByBankcard()

Diagram 4. Classes of the example after decision sorting by UML
diagram [9].
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package hu.decision.example2; 

//@ model import org.jmlspecs.models.*;

/** Printing the payment data.

*/

public class Purchase { 

/*@ public static pure model boolean parseable( String s ) {

 @ try { int d = Integer.parseInt(s); return true; }

 @ catch (Exception e) { return false; }}

 @*/

/*@ public static pure model Pay desidePayingType(String[] args) {

 @ if(args[0].equals("true")||(!args[0].equals("true")&&

    @  !args[0].equals("false")))

 @  return new PayByCash(args);

 @ else

 @  return new PayByBankcard(args);

 @}

 @*/

/** Payment data - according to the payment type - is got

* using the instance of PayByCash or PayByBankcard class

*/

public Pay pay;

//@ instance invariant pay != null;

public static void main(String[] args) { 

   Purchase purchase=new Purchase(); 

   purchase.init(args); 

   purchase.printBill(); 

 } 

/** Checking the number of arguments and creating the instance

* of PayByCash or PayByBankcard class, by which the payment data

* is printed.

*/

/*@

 @ private normal_behavior

 @  requires args==null||args.length<4;

 @  assignable \nothing;

 @  ensures false;

 @ also

 @ private normal_behavior

 @  requires args!=null&&args.length>=4&&pay==desidePayingType(args);

 @ {|

 @    {| 

 @   requires pay instanceof PayByCash;

 @   assignable pay, System.out;

 @   ensures pay.billNumber==Integer.parseInt(pay.args[1])&&

 @    pay.requiredAmount==Integer.parseInt(pay.args[2]);

 @   ensures ((PayByCash)pay).receivedAmount==Integer.parseInt(pay.args[3]);

 @  also

 @   requires pay instanceof PayByBankcard;

 @   assignable pay, System.out;

 @   ensures pay.billNumber==Integer.parseInt(pay.args[1])&&

 @    pay.requiredAmount==Integer.parseInt(pay.args[2]);

 @   ensures ((PayByBankcard)pay).cardNumber==pay.args[3];

  @  |}

  @ also

 @  requires !parseable(args[1])||!parseable(args[2])||

 @   !parseable(args[3]);

 @  assignable \nothing;

 @  ensures false;

 @ |}

@*/

private void init(String[] args){ 

//If there are not enough arguments.
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if(args == null || args.length < 4 ){ 

   System.err.println("There are not enough arguments!");

   System.exit(-1);

} 

try{

//Creating the Pay object by which the payment behaviours

are realized.//

if(args[0].equals("true"))

pay=new PayByCash(args); 

else if(args[0].equals("false"))

pay=new PayByBankcard(args); 

else

pay=new PayByCash(args); 

   System.out.println("PayByCash?:(true/false) "+args[0]);

  } 

catch (java.lang.NumberFormatException nfe){ 

   System.err.println("The format of the Arguments is not appropriate!");

   System.exit(-1);

  } 

 } 

/** Based on the pay instance the payment data is printed.

*/

/*@ private normal_behavior

 @  requires pay instanceof PayByCash;

 @  assignable System.out;

 @  ensures (* Prints the Bill Number, Required Amount,

 @   Received Amount*);

 @ also

 @ private normal_behavior

 @  requires pay instanceof PayByBankcard;

 @  assignable System.out;

 @  ensures (* Prints the Bill Number, Required Amount,

 @   Card Number*);

@*/

private void printBill(){ 

  String payInfo = pay.getPayInfo();

  System.out.println("Payinfo: "+ payInfo); 

 } 

}

/*-------------------------------------------------------------------*/

package hu.decision.example2; 

//@ model import org.jmlspecs.models.*;

/** The parent class of payment type class hierarcy.

*It determines the common data structure and the behaviour

*of the subclasses (payment types).

*/

public abstract class Pay { 

/*@ public static pure model boolean parseable( String s ) {

 @ try { int d = Integer.parseInt(s); return true; }

 @ catch (Exception e) { return false; }}

 @*/

protected /*@ spec_public @*/ String[] args;

// @ invariant args!=null && args.length==4;

protected /*@ spec_public @*/ long billNumber = 0; 

te instance initially llNumber == 0;// @ priva  bi

protected /*@ spec_public @*/ int requiredAmount=0;

// @ private instance initially requiredAmount == 0;

/**

*Getting the bill number and the required amount, which are the

*common data structure of payment types.

*/

/*@ public behavior

 @  requires parseable(args[1])&&parseable(args[2]);
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 @  assignable args, billNumber, requiredAmount, System.out;

 @  ensures args==in_args && billNumber==Integer.parseInt(args[1])&& 

 @  requiredAmount==Integer.parseInt(args[2]);

 @ also

 @  requires !parseable(args[1])||!parseable(args[2]);

 @  assignable args;

 @  ensures args == in_args;

 @  signals_only java.lang.NumberFormatException;

@*/

public Pay(String[] in_args) throws NumberFormatException 

 { 

this.args=in_args;

billNumber = Integer.parseInt(args[1]);

  System.out.println("Bill Number:(Number) "+billNumber);

requiredAmount = Integer.parseInt(args[2]);

  System.out.println("Required Amount:(Number) "+requiredAmount);

 } 

/** Getting the payment data according to payment type. The behaviour

*   is realized by the subclasses of the Pay class.

*/

abstract public String getPayInfo(); 

}

/*-------------------------------------------------------------------*/

package hu.decision.example2; 

//@ model import org.jmlspecs.models.*;

/**

* The PayByBankcard class as the subclass of the Pay class is available,

* if the customer pays by bankcard as it is decided in the Main method.

*/

public class PayByBankcard extends Pay{ 

public  String cardNumber;

/** If the customer pays by bankcard,

* then getting the card-number is necessary.

*/

/*@ also

 @  public behavior

 @  requires parseable(args[3]);

 @  assignable cardNumber, System.out;

 @  ensures cardNumber==Integer.parseInt(args[3]);

 @ also

 @  requires !parseable(args[1])||!parseable(args[2]);

 @  assignable args;

 @  ensures args == in_args;

 @  signals_only java.lang.NumberFormatException;

@*/

public PayByBankcard(String[] args) 

 { super(args);

cardNumber = args[3]; 

  System.out.println("cardNumber Amount:(String)"+cardNumber);      

 } 

/** Printing the payment data according to the payment type.

*/

/*@ public normal_behavior

 @  assignable \nothing;

 @  ensures \result == "Bill Number: "+String.valueOf(billNumber)+

 @  "; Required Amount: "+String.valueOf(requiredAmount)+

 @  "; Card Number: "+String.valueOf(cardNumber);

@*/

public String getPayInfo() 

 { 

return "Bill Number: " + String.valueOf(billNumber)+
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"; Required Amount: "+ String.valueOf(requiredAmount)+

"; Card Number: " + String.valueOf(cardNumber);

 } 

}

/*-----

package hu.decision.example2; 

--------------------------------------------------------------*/

//@ model import org.jmlspecs.models.*;

/**

* The PayByCash class as the subclass of the Pay class is available,

* if the customer pays in cash as it is decided in the Main method.

*/

public class PayByCash extends Pay{ 

protected /*@ spec_public @*/ int receivedAmount=0;

// @ public instance initially receivedAmount == 0;

/** If the customer pays in cash, 

* then getting the received amount is necessary.

*/

/*@ public normal_behavior

 @  requires parseable(args[3]);

 @  assignable receivedAmount ,System.out;

 @  ensures receivedAmount == Integer.parseInt(args[3]);

 @ also

 @ public exceptional_behavior

 @  requires !parseable(args[3]);

 @  assignable receivedAmount, System.out;

 @  signals_only java.lang.NumberFormatException;

@*/

public PayByCash(String[] args) throws NumberFormatException 

 { super(args);

receivedAmount = Integer.parseInt(args[3]);

  System.out.println("Received Amount:(Number) "+receivedAmount);

 } 

/** Printing the payment data according to the payment type.

*/

/*@ public normal_behavior

 @  assignable \nothing;

 @  ensures \result == "Bill Number: "+String.valueOf(billNumber)+

 @   "; Required Amount: "+String.valueOf(requiredAmount)+

 @   "; Received Amount: "+String.valueOf(receivedAmount);

@*/

public String getPayInfo() 

 { 

return "Bill Number: "+String.valueOf(billNumber)+

"; Required Amount: "+String.valueOf(requiredAmount)+

"; Received Amount: "+String.valueOf(receivedAmount);

 } 

}

The decisions about paying mode with different methodologies will be defined in
the Pay class hierarchy. The two decision options differ in receiving and printing
data about paying.

The PayByCash class – as the subclass of the Pay class – is available, if the
customer pays by cash as it is decided in the Main method.

The PayByBankcard class – as the subclass of the Pay class – is available, if
the customer pays by bankcard as it is decided in the Main method.

The instantiation can be found in the ‘init’ method, by which the decision can
be enclosed and archived by sorting it referring to an aggregation as a variable (pay
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object). The archived decision can be used in the next decision occasions without
knowing about the result of the decision.

if(args[0].equals("true"))

y new PayByCash(args); pa =

else if gs[0].equals("false"))(ar

y=new PayByBankcard(args); pa

else

pay=new PayByCash(args);

The JML foramlization of enlosing:
@ public static pure model Pay desidePayingType(String[] args) {

 @ if(args[0].equals("true")||(!args[0].equals("true")&&

  @  !args[0].equals("false")))

 @  return new PayByCash(args);

 @ else

 @  return new PayByBankcard(args);

 @}

...

 @  requires args!=null&&args.length>=4&&pay==desidePayingType(args);

...

The archived decision can be reused in the next decision cases based on pay object
as follows:
 @   requires pay instanceof PayByCash;

 @   ... 

 @  also

 @   requires pay instanceof PayByBankcard;

 @   ... 

The type of the pay object determines the appropriate decision option for the next
decision occasions, accordingly the decision enclosing is realized.

6. Conclusion

The new interpretation of inheritance – as an extension of the old interpretation
– is introduced, and described by an example. Accordingly, the aim of the applica-
tion of inheritance and the object-oriented paradigms is the elimination of decision
repetition by sorting the decisions’ definitions into class hierarchy. By using the
object-oriented paradigms, the consistence of the decisions can be solved making
the maintenance of the program easier.

In the Introduction, we showed the properties of well-structured programs. In
order that these properties could be examined, the formalization of the decisions
is introduced by JML. Based on JML, the non-sorted and sorted states of the
decisions can be described realizing the formal differences between them.

We have used the JML formalization method in order to examine the cases of
decision repetitions and the relations of complex decisions.

As it was mentioned in [11], there are connections between the decision based in-
terpretation of object-oriented paradigms and Design Patterns, accordingly Design
Pattern gives us recipes to eliminate decision redundancy and to archive decisions.
As JML is adapted to examine the decisions and the decision repetitions of object-
oriented programs – as it was mentioned in this paper – we think JML is adapted
to formalize Design Patterns more exactly than the existing formalization tools.

As for the idea – which was introduced by [11] and examined in this paper by
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JML formalization – was created in the course of analyzing of Design Patterns, we
intend to examine Design Patterns based on JML formalization, and to examine the
additional connections between the applicability of Design Patterns and decision
repetitions

Based on the new decision-based conception, we can realize more manifest and
exact explanations for the aims of Design Patterns. By using the new idea, a
new, more natural classification of Design Patterns is described in [11], by which
we would like to launch a discussion about a new interpretation of the existing
classification [8].

According to our plan, we will examine whether the decision repetition in the
design and the source can be eliminated by automatic sorting, that helps to upgrade
the quality of the design and the source automatically.
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Abstract

The aim of this paper is to investigate the zeros of the general polynomials

q(i,t)
n (x) =

n∑

k=0

Ri+ktx
n−k = Rix

n + Ri+tx
n−1 + · · · + Ri+(n−1)tx + Ri+nt,

where i > 1 and t > 1 are fixed integers.

Keywords: Second order linear recurrences, bounds for zeros of polynomials
with special coefficients

MSC: 11C08, 13B25

1. Introduction

The the second order linear recursive sequence

R = {Rn}∞n=0

is defined by the following manner: let R0 = 0, R1 = 1, A and B be fixed positive
integers. Then for n > 2

Rn = ARn−1 +BRn−2. (1.1)

According to the known Binet-formula, for n > 0

Rn =
αn − βn

α− β
,

∗Research has been supported by the Hungarian OTKA Foundation No. T048945.
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where α and β are the zeros of the characteristic polynomial x2 − Ax − B of the
sequence R. We can suppose that α > 0 and β < 0.

In the special case A = B = 1 we can get the wellknown Fibonacci-sequence,
that is, with the usual notation

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 (n > 2).

According to D. Garth, D. Mills and P. Mitchell [1] the definition of the Fibonacci-
coefficient polynomials pn(x) is the following:

pn(x) =

n∑

k=0

Fk+1x
n−k = F1x

n + F2x
n−1 + · · · + Fnx+ Fn+1.

In [3] we delt the zeros of the polynomials qn(x), where

qn(x) =

n∑

k=0

Rk+1x
n−k = R1x

n +R2x
n−1 + · · · +Rnx+Rn+1,

that is, our results concerned to a family of the linear recursive sequences of second
order.

The aim of this revisit of the theme is to investigate the zeros of the much more
general polynomials q(i)n (x) and q(i,t)n (x), where i > 1 and t > 1 are fixed integers:

q(i)n (x) =

n∑

k=0

Ri+kx
n−k = Rix

n +Ri+1x
n−1 + · · · +Ri+n−1x+Ri+n, (1.2)

q(i,t)n (x) =

n∑

k=0

Ri+ktx
n−k = Rix

n +Ri+tx
n−1+Ri+2tx

n−2 · · ·+Ri+(n−1)tx+Ri+nt.

2. Preliminary and known results

At first we mention that the polynomials q(i)n (x) can easily be rewritten in a

recursive manner. That is, if q(i)0 (x) = Ri then for n > 1

q(i)n (x) = xq
(i)
n−1(x) +Ri+n.

We need the following three lemmas:

Lemma 2.1. For n > 1 let g
(i)
n (x) = (x2 −Ax−B)q

(i)
n (x). Then

g(i)
n (x) = Rix

n+2 +BRi−1x
n+1 −Ri+n+1x−BRi+n.

Proof. Using (1.2) we get q(i)1 (x) = Rix+Ri+1 and by (1.1) g(i)
1 (x) = (x2 −Ax−

B)q
(i)
1 (x) = (x2 −Ax−B)(Rix+Ri+1) = · · · = Rix

3 +BRi−1x
2−Ri+2x−BRi+1.
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Continuing the proof with induction on n, we suppose that the statement is true
for n − 1 and we prove it for n. Applying (1.2) and (1.1), after some numerical
calculations one can get that

g(i)
n (x) = (x2 −Ax −B)q(i)n (x)

= xg
(i)
n−1(x) + (x2 −Ax−B)Ri+n = · · ·

= Rix
n+2 +BRi−1x

n+1 −Ri+n+1x−BRi+n.

�

Lemma 2.2. If every coefficients of the polynomial f(x) = a0+a1x+· · ·+anx
n are

positive numbers and the roots of equation f(x) = 0 are denoted by z1, z2, . . . , zn,
then

γ 6 |zi| 6 δ

hold for every 1 6 i 6 n, where γ is the minimal, while δ is the maximal value in
the sequence

a0

a1
,
a1

a2
, . . . ,

an−1

an
.

Proof. Lemma 2.2 is known as theorem of S. Kakeya [4]. �

Lemma 2.3. Let us consider the sequence R defined by (1.1). The increasing order
of the elements of the set

{
Rj+1

Rj
: 1 6 j 6 n

}

is
R2

R1
,
R4

R3
,
R6

R5
, . . . ,

R7

R6
,
R5

R4
,
R3

R2
.

Proof. Lemma 2.3 can be found in [2]. �

3. Results and proofs

At first we deal with the number of the real zeros of the polynomial q(i)n (x)
defined in (1.2), that is

qn((i)x) =

n∑

k=0

Ri+kx
n−k = Rix

n +Ri+1x
n−1 + · · · +Ri+n−1x+Ri+n.

Theorem 3.1. a) If n > 2 and even, then the polynomial q
(1)
n (x) has not any real

zero, while if i > 2 then q
(i)
n (x) has no one or has two negative real zeros, that is,

every zeros – except at most two – are non-real complex numbers.

b) If n > 3 and odd, then the polynomial q
(i)
n (x) has only one real zero and this

is negative. That is, every but one zeros are non-real complex numbers.



126 F. Mátyás

Proof. Because of the definition (1.1) of the sequence R the coefficients of the poly-

nomials q(i)n (x) are positive ones, thus positive real root of the equation q(i)n (x) = 0
does not exist. That is, it is enough to deal with only the existence of negative roots
of the equation q(i)n (x) = 0. a) Since n is even, the coefficients of the polynomial

g(i)
n (−x) = Ri(−x)n+2 +BRi−1(−x)n+1 −Ri+n−1(−x) −BRi+n

= Rix
n+2 −BRi−1x

n+1 +Ri+n−1x−BRi+n

has only one change of sign if i = 1, thus according to the Descartes’ rule of
signs, the polynomial g(i)

n (x) has exactly one negative real zero. But g(i)
n (x) =

(x2 −Ax−B)q
(i)
n (x) implies that g(i)

n (β) = 0, where β < 0, and so the polynomial

q
(i)
n (x) can not have any negative real zero if i = 1. But in the case i > 2 the

polynomial g(i)
n (−x) has 3 changes of sign, that is, q(i)n (x) = 0 has no one or 2

negative roots.

b) Since n > 3 is odd, thus the existence of at least one negative real zero is
obvious. We have only to prove that exactly one negative real zero exists. The
polynomial

g(i)
n (−x) = Ri(−x)n+2 +BRi−1(−x)n+1 −Ri+n−1(−x) −BRi+n

= −Rix
n+2 +BRi−1x

n+1 +Ri+n−1x−BRi+n

shows that among its coefficients there are two changes of signs, thus according to
the Descartes’ rule of signs, the polynomial g(i)

n (x) has either two negative real zeros

or no one. But g(i)
n (x) = (x2 − Ax − B)q

(i)
n (x) implies that for β < 0 g

(i)
n (β) = 0.

Although, g(i)
n (α) = 0 also holds, but α > 0. That is, an other negative real zero

of g(i)
n (x) must exist. Because of g(i)

n (x) = (x2 −Ax −B)q
(i)
n (x) this zero must be

the zero of the polynomial q(i)n (x).
This terminated the proof of the theorem. �

Remark 3.2. Some numerical examples imply the conjection that if n is even and
i > 2 then q(i)n (x) has no negative real root.

In the following part of this note we deal with the localization of the zeros of
the polynomials

q(i)n (x) =

n∑

k=0

Ri+kx
n−k = Rix

n +Ri+1x
n−1 + · · · +Ri+n−1x+Ri+n.

Theorem 3.3. Let z ∈ C denote an arbitrary zero of the polynomial q
(i)
n (x) if

n > 1. Then
Ri+1

Ri
6 |z| 6

Ri+2

Ri+1
,
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if i is odd, while
Ri+2

Ri+1
6 |z| 6

Ri+1

Ri
,

if i is even.

Proof. To apply Lemma 2.2 for the polynomial q(i)n (x) we have to determine the
minimal and maximal values in the sequence

Ri+n

Ri+n−1
,
Ri+n−1

Ri+n−2
, . . . ,

Ri+1

Ri
.

Applying Lemma 2.3, one can get the above stated bounds. �

Remark 3.4. Even more there is an other possibility for further generalization.
Let i > 1 and t > 1 be fixed integers.

q(i,t)n (x) :=

n∑

k=0

Ri+ktx
n−k = Rix

n+Ri+tx
n−1+Ri+2tx

n−2 · · ·+Ri+(n−1)tx+Ri+nt.

The following recursive relation also holds if q(i,t)0 (x) = Ri then for n > 1

q(i,t)n (x) = xq
(i,t)
n−1(x) +Ri+nt.

Using similar methods for the set

{
Ri+jt

Ri+(j−1)t
: 1 6 j 6 n

}

it can be proven that for any zero z of q(i,t)n (x) = 0:
if i and t are odd then:

Ri+t

Ri
6 |z| 6

Ri+2t

Ri+t
,

if i is even and t is odd then:

Ri+2t

Ri+t
6 |z| 6

Ri+t

Ri
,

if i and t are even then:
Ri+nt

Ri+(n−1)t
6 |z| 6

Ri+t

Ri
,

if i is odd and t is even then:

Ri+t

Ri
6 |z| 6

Ri+nt

Ri+(n−1)t
.
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Abstract

In this paper is obtained q-analogue of a double inequality involving the
Euler’s gamma function proved in [5]. In the same way, the paper [5] gene-
ralized papers [1]–[4], this paper will generalize some inequalities for the q-
gamma function such as those presented in [9, 10].
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1. Introduction

The Euler gamma function Γ(x) is defined for x > 0 by

Γ(x) =

∫ ∞

0

e−ttx−1dt.

The Psi or digamma function, the logarithmic derivative of the gamma function is
defined by

ψ(x) =
Γ′(x)

Γ(x)
, x > 0.

The q-analogue of the gamma function is defined by

Γq(x) = (1 − q)1−x
∞∏

i=1

1 − qi

1 − qx+i
, q ∈ (0, 1). (1.1)

The q-psi function is defined as

ψq(x) =
d

dx
log Γq(x). (1.2)

129
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We will make use of the following well known facts

lim
q→1−

Γq(x) = Γ(x), lim
q→1−

ψq(x) = ψ(x). (1.3)

R. Askey, [8] derived some properties of the q-gamma function.
Papers [1, 2, 3, 4] were related to some double inequalities involving the gamma

function.
In [5] the following theorem is proved:

Theorem 1.1. Let f be a function defined by

f(x) =
Γ(a+ bx)c

Γ(d+ ex)f
, x > 0, (1.4)

where a, b, c, d, e, f are real numbers such that: a+bx > 0, d+ex > 0, a+bx 6 d+ex.

In both situations:

i) Let ef > bc > 0. If ψ(a+ bx) > 0 or ψ(d+ ex) > 0

ii) Let bc > ef > 0. If ψ(d+ ex) < 0 or ψ(a+ bx) < 0

the function f is decreasing for x > 0 and for x ∈ [0, 1] the following double
inequality holds:

Γ(a+ b)c

Γ(d+ e)f
6

Γ(a+ bx)c

Γ(d+ ex)f
6

Γ(a)c

Γ(d)f
. (1.5)

which represents a generalization of inequalities given in [1, 2, 3, 4].
Some of those inequalities were generalized using q-gamma analogue function.

Thus T. Kim and C. Adiga [9] proved:

Theorem 1.2. If 0 < q < 1, a > 1 and x ∈ [0, 1] then

1

Γq(1 + a)
6

Γq(1 + x)a

Γq(1 + ax)
6 1. (1.6)

Letting q tend to 1 and a = n, one obtains q-gamma analogue to the inequality
given in [1]. Letting q tend to 1, one obtains q-gamma analogue to the inequality
given in [2].

Recently, T. Mansour [10] proved:

Theorem 1.3. Let x ∈ [0, 1], q ∈ (0, 1), a > b > 0, c, d positive real numbers with
bc > ad and ψq(b+ ax) > 0 then

Γq(a)
c

Γq(b)d
6

Γq(a+ bx)c

Γq(b+ ax)d
6

Γq(a+ b)c

Γq(a+ b)d
. (1.7)

which again by letting q to 1 gives q-gamma analogue of inequality given in [4] and
thus gives a generalization of the main results of [4].
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The idea of this paper is to consider the q-gamma analogue of the function given
by Theorem 1.1, so to consider the function:

f(x) =
Γq(a+ bx)c

Γq(d+ ex)f
, x > 0 (1.8)

and to have q-analogue results of [5] and thus to generalize the results of [9] and
[10].

2. Results

In order to establish the proof of the theorems, we need the following lemmas:

Lemma 2.1. The q-psi function has the following series representation:

ψq(x) = − log(1 − q) + log q ·
∞∑

i=0

qx+i

1 − qx+i
. (2.1)

Proof. See [7]. �

Lemma 2.2. Let q ∈ (0, 1), x > 0, y > 0 and x < y. Then

ψq(x) < ψq(y). (2.2)

Proof. Using Lemma 2.1 we obtain:

ψq(x) − ψq(y) = log q ·
( ∞∑

i=0

qx+i

1 − qx+i
−

∞∑

i=0

qy+i

1 − qy+i

)

= log q ·
∞∑

i=0

( qx+i

1 − qx+i
− qy+i

1 − qy+i

)

= log q ·
∞∑

i=0

qx+i − qy+i

(1 − qx+i)(1 − qy+i)

= log q ·
∞∑

i=0

qi(qx − qy)

(1 − qx+i)(1 − qy+i)
< 0,

because for x < y and q ∈ (0, 1) we have qx > qy and log q < 0 which completes
the proof. �

Lemma 2.3. Let q ∈ (0, 1), a+ bx > 0, d+ ex > 0 and a+ bx 6 d+ ex. Then

ψq(a+ bx) − ψq(d+ ex) 6 0. (2.3)

Proof. By Lemma 2.2. �
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Lemma 2.4. Let a, b, c, d, e, f be real numbers such that a + bx > 0, d + ex > 0,
a+ bx 6 d+ ex and ef > bc > 0. Let q ∈ (0, 1). If

(i) ψq(a+ bx) > 0 or

(ii) ψq(d+ ex) > 0

then
bcψq(a+ bx) − efψq(d+ ex) 6 0. (2.4)

Proof. (i) Let ψq(a+bx) > 0. From Lemma 2.3 we have ψq(d+ex) > ψq(a+bx) >
0. Multiplying both sides of inequality ef > bc with ψq(d+ ex) we obtain

efψq(d+ ex) > bcψq(d+ ex) > bcψq(a+ bx),

so
bcψq(a+ bx) − efψq(d+ ex) 6 0.

(ii) If ψq(d + ex) > 0, considering (2.3) we see that there are two possibilities for
ψq(a+ bx).

Case 1. ψq(a+ bx) < 0, Case 2. ψq(a+ bx) > 0.

Hence we have:

Case 1. bcψq(a+ bx) < 0 and efψq(d+ ex) > 0 so clearly (2.4) holds.

Case 2. The possibility ψq(a+ bx) > 0 was proved in (i). �

Lemma 2.5. Let a, b, c, d, e, f be real numbers such that a + bx > 0, d + ex >
0, a+ bx 6 d+ ex and bc > ef > 0. Let q ∈ (0, 1). If

(i) ψq(d+ ex) < 0 or

(ii) ψq(a+ bx) < 0

then
bcψq(a+ bx) − efψq(d+ ex) 6 0. (2.5)

Proof. (i) Let ψq(d+ex) < 0. From Lemma 2.3 we have ψq(a+bx) 6 ψq(d+ex) <
0. Multiplying both sides of inequality bc > ef with ψq(a+ bx) we obtain

bcψq(a+ bx) 6 efψq(a+ bx) 6 efψq(d+ ex),

so
bcψq(a+ bx) − efψq(d+ ex) 6 0.

(ii) If ψq(a+ bx) < 0, considering (2.3) we find out that there are two possibilities
for ψq(d+ ex).

Case 1. ψq(d+ ex) > 0, Case 2. ψq(d+ ex) < 0.

Then we proceed in the same way as in previous lemma. �
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Theorem 2.6. Let f be a function defined by

f(x) =
Γq(a+ bx)c

Γq(d+ ex)f
, x > 0, q ∈ (0, 1) (2.6)

where a, b, c, d, e, f are real numbers such that: a + bx > 0, d + ex > 0, a+ bx 6

d + ex, ef > bc > 0. If ψq(a + bx) > 0 or ψq(d + ex) > 0 then the function f is
decreasing for x > 0. For x ∈ [0, 1] the following double inequality holds:

Γq(a+ b)c

Γq(d+ e)f
6

Γq(a+ bx)c

Γq(d+ ex)f
6

Γq(a)
c

Γq(d)f
. (2.7)

Proof. Let g be a function defined by g(x) = log f(x). Then

g(x) = c log Γq(a+ bx) − f log Γq(d+ ex).

So

g′(x) = bc
Γ′

q(a+ bx)

Γq(a+ bx)
− ef

Γ′
q(d+ ex)

Γq(d+ ex)
= bcψq(a+ bx) − efψq(d+ ex).

By (2.4), we have g′(x) 6 0. It means g is decreasing for x > 0, hence f is
decreasing for x > 0. For x ∈ [0, 1] we have f(1) 6 f(x) 6 f(0) or

Γq(a+ b)c

Γq(d+ e)f
6

Γq(a+ bx)c

Γq(d+ ex)f
6

Γq(a)
c

Γq(d)f
.

This concludes the proof of the Theorem. �

In a similar way, using Lemma 2.5 it is easy to prove the following theorem.

Theorem 2.7. Let f be a function defined by

f(x) =
Γq(a+ bx)c

Γq(d+ ex)f
x > 0, q ∈ (0, 1) (2.8)

where a, b, c, d, e, f are real numbers such that: a + bx > 0, d + ex > 0, a+ bx 6

d + ex, bc > ef > 0. If ψq(d + ex) < 0 or ψq(a + bx) < 0 then the function f is
decreasing for x > 0. For x ∈ [0, 1] the inequality (2.7) holds.

By Theorems 2.6 and 2.7 and using (1.3) it is easy to verify that the following
remarks hold:

Remark 2.8. Considering (2.7) with a = 1, b = 1, c = n, n ∈ N, d = 1, e = n,
n ∈ N, f = 1 and (1.3) one obtains the q-analogue to the inequality given in [1],
which was proved in [9]

Remark 2.9. Considering (2.7) with a = 1, b = 1, c = a, a > 1, d = 1, e =
a, f = 1 and (1.3) one obtains the q-analogue to the inequality given in [2], also
proved in [9].
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Remark 2.10. If in (2.7) we take a = 1, c = a, d = 1, e = a, f = b, with c > f > 0
and using (1.3) we obtain q-analogue to the inequality given in [3].

Remark 2.11. If in (2.7) we take a = b, b = a, c = d, d = a, e = b, f = c,
ef > bc > 0, with a > b > 0 and ψq(b + ax) > 0, as well as using (1.3) we obtain
q-analogue to the inequality [4] proved in [10].
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Abstract

In computer-aided manufacturing systems a number of methods have been
published for milling path generation considering different geometric require-
ments and conditions determined by specific environments. In this paper we
propose a method for the computation of the moving direction of the cut-
ting tool in 3-axis milling considering the local features of the surface. Our
method combines two geometric approaches. Computations are presented on
analytical surfaces and on triangle meshes.

Keywords: 3-axis milling, tool path generation, isophotic lines, triangle mesh

MSC: 68U05, 68U07, 65D17, 65D18

1. Introduction

The most frequently used toolpath generation methods in CNC machining of
free-form surfaces use planar curves, where the surface is intersected with parallel
planes, and the intersection curves are taken as tool paths. The distance between
two adjacent intersecting planes determines the distance between two tool paths
(called tool path side step). Between the tool paths a scallop (rib) arises, the height
of which measures the machining error (Figures 1, 2). This error depends on the
shape of the cutting tool (flat end, ball end or other shapes) and also on the shape
of the surface. Several computations have been published for optimizing the total
length of the tool paths which is longer, if the number of cutting planes are larger,
while the error is within a prescribed tolerance.

1Supported by a joint project between the TU Berlin and the BUTE and by the Hungarian
National Foundation OTKA No. T047276

135



136 M. Szilvási-Nagy, Sz. Béla, Gy. Mátyási

R

��

�
�
�
�
��

��
�����

�
�
�

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

R

R

Figure 1: Machining error arising with ball end tool

The change of the angle between the tool axis and the surface normal leads to
unevenly distributed side steps and fluctuating errors. A solution of this problem
is the segmentation of the surface into regions, where this angle does not change
too much. Such a segmentation with isophotic lines is proposed in [2]. Then the
distances of the intersecting planes are computed in each region according to the
prescribed tolerance (Figure 3). Within such a region the contact surface of the
tool end with the material to be removed has a constant size. Consequently, the
abrasion of the tool is even. An isophote interpolation method is proposed in [10],
which can be used in isophote based tool path generations.

In an other strategy the tools are moving on the surface along isoparametric
curves instead of plane sections [4]. Based on curvature values, independently from
the parametrization of the surface, local and global millability with a given tool are
investigated in [8] and [9]. This strategy takes into account that the width of the
machined stripe depends on the curvature of the surface, and proposes a moving
direction of the tool in which the stripe is the widest.

Fig 4 shows which part of the material is removed by the milling tool. The
common part of the offset surface determined by the prescribed machining tolerance
ε and the ball end of the tool is the so called contact surface. The projection of its
boundary curve onto the surface determines the width s of the machining stripe,
which is wider on flatter surfaces and narrower on more curved surfaces.

In this paper we propose a method for tool path generation considering the
following requirements: (i) the change of the angle between the surface normal
and the tool axis along a tool path is minimal, and (ii) the side step length is
maximal, while the machining error is smaller than a given tolerance. Of course,
these requirements cannot be fulfilled at the same time, we try to find a compromise.

Our investigations are restricted to 3-axis milling with ball end tools. We
present our computations on analytical and on discrete surfaces.
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Figure 2: Processed surface with scallops

Figure 3: Segmentation of a surface with varying curvature

2. Analytic surfaces

We assume that the analytic surface is represented by a function f(x, y) over a
region in the xy plane, and the axis of the cutter is parallel to the z-axis. Our task
is to determine the moving direction of the tool from every point of the surface
considering the requirements of tool path generation and the geometrical features
of the surface. In our investigations two geometric requirements will influence the
shape of milling paths.

The first geometrical requirement is to ensure even abrasion of the tool end.
This means that we want to keep the angle between the tool axis and surface normal
constant during the cutting motion. A curve on the surface in the points of which
the surface normal and a reference direction (here the tool axis) form a constant
angle is called isophote or isophotic curve. On a smooth surface an isophotic curve
assigned to an angle between zero and 90 degrees is a continuous curve, or a point.
On the other hand, each point of the surface belongs to an isophotic curve, or the
surface normal is parallel to the reference direction at this point. Properties and
computation methods of isophota are described in [5]. In Fig 5 isophotic curves
are shown on a quadratic surface by sequences of points which are computed on
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Figure 4: Simplified axial intersection of the milling tool and the
surface

the base of the definition with a given step size.
The distances between adjacent isophota on a generic surface are varying, there-

fore the fluctuation of the machining error will be out of control, when taking
isophota for tool paths.
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Figure 5: Isophota on the saddle surface

We have to keep the machining error within a given tolerance. Therefore, we
first compute the processed part of the surface around a contact point of the ball
end and the surface. The error is less than a given tolerance ε, if the points of
the processed part are between the task surface f(x, y) and its offset Off (f, ε, x, y)
consisting of the points which have the distance ε to the surface f(x, y). If the
coordinates of the contact point are (x0, y0, f(x0, y0)), then we obtain the equation

|Off (f, ε, x, y) − Off (f,R, x0, y0)| = R (2.1)
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for the boundary curve (called contact curve) of the processed part which is the
curve of intersection of the ball end and the offset surface, where Off (f, ε, x, y) is
the offset of the surface f(x, y) with distance ε, and the second term gives the center
of the ball end. The points of the contact curve are determined by the solutions
(x, y) of this equation. (Our numerical method will result in a given number of
points.) The normal projection of the contact curve on the surface determines the
surface patch of our interest. This is the processed surface patch, and the optimal
moving direction of the tool at the actual contact point is perpendicular to the
largest diameter of this patch. In this way we get the widest machined stripe.

Figure 6: The boundary curve on the offset surface of the processed
patch

We can calculate this direction in different ways. One method given in [9]
calculates with the difference of the surface of the cutting tool and the task surface
f(x, y). This difference surface is approximated in second order, then the boundary
curve of the processed patch, for the points of which the approximated difference
is less than the tolerance, is projected onto the xy plane. The obtained curve is
an ellipse, and its major axis determines the largest width of the machined stripe,
while its minor axis determines the proposed moving direction.

In our geometric approach we approximate the moving direction from the equa-
tion (2.1). We estimate the diameters of the processed patch in n different directions
(n is a given number in our algorithm). In this calculation we use in the above
equation (2.1) the Taylor polynomial of degree 8 of the surface f(x, y). First, we
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set up n directions around the contact point and a vertical plane through each
direction at the contact point. Then for each plane we solve the system of equa-
tions formed by (2.1) and the actual plane numerically. The solution gives the
(x, y) coordinates of the end points of the patch diameter in this plane. Finally, we
choose the direction of the largest diameter, and the proposed moving direction is
perpendicular to it.

Now we want to consider the two requirements at the same time. That is,
the tool should process a wide stripe, while the abrasion of the tool is even. Our
compromise is the following. We modify the moving direction computed from the
first requirement in the following way. We compute the isophote passing through
the actual contact point. Then we move the tool end neither along this isophote,
nor in the computed moving direction, but along a bisector direction of them.
According to the two possible orientations of the isophote two bisectors exist. One
is in “forward direction”, the other one “backwards”. The isophote passing through
the actual contact point intersects the boundary curve of the processed surface
patch in two points (Fig 7). The appropriate direction can be selected with the
help of the two points of intersection and the moving direction computed in the
former step. We have chosen the next contact point in this corrected moving
direction by a specified constant step length.

Figure 7: Isophote (the left side curve) and the boundary of the
processed patch at the contact point

In our further investigations we’ll try to compute the correction of the moving
direction by the isophotic curves and also the step distance considering the local
shape of the surface. The overlapping of the processed patches along the adjacent
tool paths require further investigations too.
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Figure 8: Processed patches along tool paths on the saddle surface
and on the sphere

3. Discrete surfaces

Computation of characteristic values of a free-form surface approximated by a
triangular mesh requires quite a different technique from that in the analytic case.
Namely, the surface data can be only estimated from the mesh data. Standard
representations of triangle meshes are generated by the most CAD systems in
STL (stereo lithography) format developed for rapid prototyping. Such an STL
data structure contains the set of the mesh triangles, which complemented with
adjacency informations becomes a polyhedral data structure. A polyhedral data
structure makes possible to compute the line of intersection of the mesh with a plane
which is the base of different algorithms, e.g. slicing in layered manufacturing [6]
or tool path generation in milling. Though discrete counterparts of differential
operators have been developed and published, there are no unique or best methods
for estimating the surface normal or the curvature values at the points of the mesh.

For the characterization of the local shape of a surface presented by a triangle
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mesh the estimation of principal directions is crucial. We apply in our computations
the method of geodesic disk described in [7] (Fig 9). In this method the normal
curvature values are estimated at the center point of a given triangle of the mesh in
the following way. The mesh is intersected by a set of normal planes passing through
the barycentric center of the triangle, and in each normal plane a fixed geodesic
radius is measured along the polygonal line of intersection in both directions from
the center point. The chord length of such a geodesic diameter characterizes the
normal curvature in this intersecting plane. The normal curvature approximated
from the geodesic radius rg and the chord length d is (Fig 10)

κn ≈ 1

rg

√

6

(

1 − d

2rg

)

. (3.1)

Selecting the maximal normal curvature, i.e. the minimal chord length at the
given point determines one of the two principal directions. In Fig 11 a geodesic
circle is shown on the mesh of the duck. On the right hand side only feature and
silhouette edges are drawn. The principal direction of the biggest normal curvature
is indicated by a straight line segment.

We note that the method of the geodesic circle is suitable also for detecting
planar and spherical regions on the mesh.

Figure 9: Geodesic disk for estimating normal curvatures and prin-
cipal directions

In generating the offset of a triangle mesh several problems arise. After moving
the facets in their normal directions by a given distance, gaps and overlappings
occur in convex and concave regions, respectively. One method for avoiding gaps
is offsetting also edges and vertices in averaged normal vector directions, then
trimming the adjacent surfaces to each other [3]. Trimming and removing the
overlapping portions are made in complicated processes. In an other approach,
where tool paths are generated in parallel driving planes, filling of gaps is made
in plane sections of the offsetted facets with the driving planes, then arc and line
segments are used. The trimming problem is solved also in two dimensions in order
to generate a smooth tool path in the actual plane [1].

In our method we solve the offsetting problem in normal sections. In order to
determine the processed patch with a ball end on the mesh, the contact curve, i.e.
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Figure 10: Normal curvature estimated in a normal section

Figure 11: Triangle mesh of the duck and a principle direction

the curve of intersection of the surface of the ball end with the offset mesh has to
be computed, then this curve has to be projected onto the mesh. We compute the
points of the contact curve in a set of normal planes in the following way. 1. We
set up n normal planes through the contact point. 2. We intersect the triangle
face of the contact point and its two neighbours with the actual normal plane. 3.
We move the obtained segments in the normal direction of the intersected triangles
by the distance of the prescribed tolerance. 4. We fill the gap between the offset
segments, or we remove the overlapping parts (Fig 12). 5. Along the polygonal
line obtained in this way we measure the distance of the moving point from the
ball end center. If this distance is equal to the ball end radius, then the point is
on the contact curve. If all such distances are smaller than the radius, we intersect
the neighbouring triangles with the normal plane in both directions, and we repeat
the last three steps. 6. We project the two points of the contact curve computed
in the actual normal plane onto the mesh. Finally, we get 2n boundary points of
the processed patch around the contact point. We remark that our local offsetting
method works with two dimensional algorithms.

The result of this computation is shown on a “real” triangle mesh of a sphere.
The floating surface patch shown with 24 diameters is the part of the offset mesh
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intersected with the ball end (Fig 13). Its projection on the mesh is the processed
patch with the given tolerance. The perpendicular direction to the direction of
the largest diameter of this patch gives a moving direction in which the widest
machined stripe arises. This moving direction is to be corrected by minimizing the
change of the surface normal direction within a prescribed angular neighborhood,
if also the requirement of even abrasion of the tool is considered.

Figure 12: Offsetting in a normal plane

Figure 13: Intersection of a ball end with the offset of the sphere

4. Conclusions

In this paper a method is represented for the computation of the moving direc-
tion of a ball end tool in 3-axis milling. In this method two geometric requirements
are considered at the same time, and a compromizing solution is proposed to meet
both of them.
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The computations and the figures are made with the algebraic symbolic program
package Mathematica in the case of analytical description of the surface. The
algorithms are implemented in the program language Java in the case of triangle
meshes.
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1. Introduction

Sung, Hu and Volodin [8] introduced a new method for obtaining convergence
rate in the strong law of large numbers (SLLN), by using the approach of Fazekas
and Klesov [2]. This result generalizes and sharpens the method of Hu and Hu [5].
Tómács [9] gave a general method by using a Hájek–Rényi type inequality (see Há-
jek and Rényi [3]) for the probabilities, which sharpens the result of Sung, Hu and
Volodin [8]. In this paper we apply this method for mixingales and superadditive
structures.

The concept of L2 mixingales was introduced by McLeish [6], and generalized
to Lr mixingales by Andrews [1]. The definition of superadditive moment function
is due to Móricz [7].

Fazekas and Klesov [2, Theorem 6.1 and 6.2] proved SLLN’s for mixingales.
In Section 3 we shall give the convergence rates in these SLLN’s. Hu and Hu
[5, Theorem 2.1] obtained convergence rate in SLLN under the superadditivity
property. In Section 4 we shall generalize this result.

We use the following notation. Let N be the set of the positive integers and R
the set of real numbers. If a1, a2, . . . ∈ R then in case A = ∅ let maxk∈A ak = 0 and
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∑

k∈A ak = 0. In this paper let {Xk, k ∈ N} be a sequence of random variables
defined on a fixed probability space (Ω,F ,P), Sn =

∑n
k=1Xk for all n ∈ N and

S0 = 0. Finally in this paper let {bk, k ∈ N} be a nondecreasing unbounded
sequence of positive real numbers.

2. A general method to obtain the rate of conver-

gence in the SLLN

Definition 2.1. Let Θr (r > 0) denote the set of functions ϑ : [0,∞) → R which
are nondecreasing, continuous at 0, ϑ(0) = 0, ϑ(x) > 0 for all x > 0 and

∞∑

n=1

n−2ϑ−r(n−1) <∞.

Remark 2.2. It is easy to see that if 0 < δ < 1 and ϑ(x) = xδ/r (x > 0), then
ϑ ∈ Θr.

Theorem 2.3 (Tómács [9], Theorem 3.4). Let {αk, k ∈ N} be a sequence of non-
negative real numbers, r > 0 and

βn = max
k6n

bkϑ

( ∞∑

i=k

αib
−r
i

)

, where ϑ ∈ Θr. (2.1)

If
∞∑

k=1

αkb
−r
k <∞ (2.2)

and there exists c > 0 such that for any n ∈ N and any ε > 0

P
(

max
k6n

|Sk| > ε
)

6 cε−r
n∑

k=1

αk, (2.3)

then

lim
n→∞

βn

bn
= 0 and

Sn

bn
= O

(
βn

bn

)

almost surely (a.s.).

Lemma 2.4. Let {αk, k ∈ N} be a sequence of nonnegative real numbers, r > 0,
0 < δ < 1, ϑ(x) = xδ/r for all x > 0, bk = k1/r for all k ∈ N and let βn be defined
by (2.1). If there exist c > 0 and 0 < γ < 1 such that

∑∞
i=k αi/i 6 c

∑∞
i=k i

−1−γ

for all k ∈ N, then
βn

n1/r
= O

(
1

nγδ/r

)

.
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Proof. Since
∑∞

i=k i
−1−γ 6

∫∞
k−1

x−1−γ dx = γ−1(k− 1)−γ for all k > 2, hence we
get

∞∑

i=k

αi

i
6

c

γ(k − 1)γ
for all k > 2 (2.4)

and

∞∑

i=1

αi

i
6 c

∞∑

i=1

i−1−γ = c+ c

∞∑

i=2

i−1−γ
6 c+

c

γ(2 − 1)γ
=
c

γ
(γ + 1).

It follows that

β1 =

( ∞∑

i=1

αi

i

)δ/r

6

(
c

γ
(γ + 1)

)δ/r

6

(
c2γ

γ
(γ + 1)

)δ/r

. (2.5)

On the other hand if n > 2 then (2.4) implies

max
26k6n

k1/r

( ∞∑

i=k

αi

i

)δ/r

6 max
26k6n

k1/r

(
c

γ(k − 1)γ

)δ/r

6 max
26k6n

(
c2γ

γ

)δ/r

k(1−γδ)/r =

(
c2γ

γ

)δ/r

n(1−γδ)/r.

This inequality, (2.5) and limn→∞ n(1−γδ)/r = ∞ imply for n ∈ N large enough

βn 6 const. max
{

(γ + 1)δ/r, n(1−γδ)/r
}

= const.n(1−γδ)/r.

So βnn
−1/r 6 const.n−γδ/r for n ∈ N large enough, which implies the statement.

�

3. Mixingales

Let {Fk, k ∈ N} be a nondecreasing sequence of sub σ-fields of F , EmXk =
E(Xk | Fm) denote the conditional expectation of Xk given Fm for m > 0 and
EmXk = 0 for m 6 0.

Definition 3.1 (McLeish [6], Andrews [1]). The sequence {(Xk,Fk), k ∈ N} is an
Lr mixingale if there exist nonnegative constants {ck, k > 0} and {ψk, k > 0} such
that ψk ↓ 0 and for all nonnegative integers k and m we have

||Ek−m Xk||r 6 ckψm and ||Xk − Ek+mXk||r 6 ckψm+1,

where ||ξ||r = (E |ξ|r)1/r for any random variable ξ.
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Lemma 3.2. If {(Xk,Fk), k ∈ N} is Lr mixingale, where r > 2 and
∑∞

m=1 ψm <
∞, then there exists c > 0 such that for any n ∈ N and any ε > 0

P
(

max
k6n

|Sk| > ε
)

6 cε−r

(
n∑

k=1

c2k

)r/2

.

Proof. Hansen [4] proved in Lemma 2 under these conditions, that there exists
c > 0 such that for any n ∈ N

E
(

max
k6n

|Sk|r
)

6 c

(
n∑

k=1

c2k

)r/2

.

Hence Markov’s inequality implies the statement. �

Theorem 3.3. Let {(Xk,Fk), k ∈ N} be an Lr mixingale, where r > 2 and
∑∞

m=1 ψm <∞. Let βn defined by (2.1) with

αk =

(
k∑

i=1

c2i

)r/2

−
(

k−1∑

i=1

c2i

)r/2

.

If
∞∑

k=1

c2k
brk

(
k∑

i=1

c2i

)r/2−1

<∞, (3.1)

then

lim
n→∞

βn

bn
= 0 and

Sn

bn
= O

(
βn

bn

)

a.s.

Proof. If A = ∅ then
∑

i∈A c
2
i = 0, hence α1 = cr1. Since

n∑

k=1

αk =

(
n∑

i=1

c2i

)r/2

,

hence Lemma 3.2 implies (2.3). By the mean value theorem

x
r/2
2 − x

r/2
1 6 (x2 − x1)

r

2
x

r/2−1
2 for all 0 6 x1 6 x2. (3.2)

Using (3.2) with x1 =
∑k−1

i=1 c
2
i and x2 =

∑k
i=1 c

2
i we get

αk = x
r/2
2 − x

r/2
1 6 c2k

r

2

(
k∑

i=1

c2i

)r/2−1

.

This inequality and (3.1) imply (2.2). Since every conditions of Theorem 2.3 are
satisfied, the statement is proved. �
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Lemma 3.4. If {(Xk,Fk), k ∈ N} is an Lr mixingale, where 1 < r 6 2 and
∑∞

m=1 ψm <∞, then there exists c > 0 such that for any n ∈ N and any ε > 0

P
(

max
k6n

|Sk| > ε
)

6 cε−r
n∑

k=1

crk.

Proof. Hansen [4] proved in Lemma 2 of Erratum under these conditions, that
there exists c > 0 such that for any n ∈ N

E
(

max
k6n

|Sk|r
)

6 c

n∑

k=1

crk.

Hence Markov’s inequality implies the statement. �

Theorem 3.5. Let {(Xk,Fk), k ∈ N} be an Lr mixingale, where 1 < r 6 2 and
∑∞

m=1 ψm <∞. Let βn defined by (2.1) with αk = crk. If

∞∑

k=1

crk
brk

<∞, (3.3)

then

lim
n→∞

βn

bn
= 0 and

Sn

bn
= O

(
βn

bn

)

a.s.

Proof. The statement is a corollary of Lemma 3.4 and Theorem 2.3. �

Corollary 3.6. Let {(Xk,Fk), k ∈ N} be an Lr mixingale, where 1 < r 6 2 and
∑∞

m=1 ψm < ∞. If there exist c > 0 and 0 < γ < 1 such that ck 6 ck−γ/r for all
k ∈ N, then for all 0 < δ < 1

Sn

n1/r
= O

(
1

nγδ/r

)

a.s.

Proof. Let bk = k1/r, αk = crk and ϑ(x) = xδ/r (x > 0), where 0 < δ < 1 is a fixed
constant. Then for all k ∈ N

∞∑

i=k

αi

i
=

∞∑

i=k

(
ci
bi

)r

6 cr
∞∑

i=k

i−1−γ .

Hence using Theorem 3.5 and Lemma 2.4 we get

Sn

n1/r
= O

(
βn

n1/r

)

= O

(
1

nγδ/r

)

a.s.

�
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4. Sequences with superadditive moment function

Definition 4.1 (Móricz [7]). {Xk, k ∈ N} is said to have the r-th (r > 0) moment
function of superadditive structure if there exists g : N∪{0}×N → [0,∞) such that

g(b, k) + g(b+ k, l) 6 g(b, k + l) for all b ∈ N ∪ {0}, k ∈ N, l ∈ N (4.1)

and for some α > 1

E |Sb+n − Sb| 6 gα(b, n) for all b ∈ N ∪ {0}, n ∈ N. (4.2)

We shall use the notation gn = g(0, n) (n ∈ N) and g0 = 0. It is easy to see
that gn 6 gn+1 for all n ∈ N ∪ {0}.

Lemma 4.2. If {Xk, k ∈ N} has r-th moment function of superadditive structure
with r > 0, α > 1, then there exists a constant Ar,α depending only on r and α
such that for any n ∈ N and any ε > 0

P
(

max
k6n

|Sk| > ε
)

6 Ar,αε
−rgα

n .

Proof. Móricz proved in [7] under these conditions, that there exists a constant
Ar,α depending only on r and α, such that for any n ∈ N

E
(

max
k6n

|Sk|r
)

6 Ar,αg
α
n .

Hence Markov’s inequality implies the statement. �

Theorem 4.3. Assume that {Xk, k ∈ N} has r-th moment function of superad-
ditive structure with r > 0, α > 1. Let βn defined by (2.1) with αk = gα

k − gα
k−1.

If
∞∑

k=1

gα
k − gα

k−1

brk
<∞, (4.3)

then

lim
n→∞

βn

bn
= 0 and

Sn

bn
= O

(
βn

bn

)

a.s.

Proof. As gk increases, we get αk > 0, thereby (4.3) implies (2.2). On the other
hand

∑n
k=1 αk = gα

n , so Lemma 4.2 implies (2.3). Now applying Theorem 2.3 we
get the statement. �

Remark 4.4. Hu and Hu proved Theorem 4.3 in special case ϑ(x) = xδ/r (0 <
δ < 1). (See Theorem 2.1 of Hu and Hu [5].)
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Corollary 4.5. Let 0 < γ < 1, c > 0, α > 1 and r > 0. If for all b ∈ N∪{0}, n ∈ N

E |Sb+n − Sb| 6 c
(

(b + n)(1−γ)/α − b(1−γ)/α
)α

,

then
Sn

n1/r
= O

(
1

nγδ/r

)

a.s. for all 0 < δ < 1.

Proof. Let g : N∪{0}×N∪{0}→ [0,∞), g(i, j) = c1/α
(
(i+ j)(1−γ)/α − i(1−γ)/α

)
.

Then (4.1) and (4.2) are satisfied, hence {Xk, k ∈ N} has r-th moment function
of superadditive structure.

Now let bk = k1/r for all k ∈ N. Since gα
i = gα(0, i) = ci1−γ for every nonnega-

tive integer i, hence we get

∞∑

i=k

gα
i − gα

i−1

bri
=

∞∑

i=k

ci1−γ − c(i− 1)1−γ

i

= c

∞∑

i=k

i1−γ

(
1

i
− 1

i+ 1

)

− c
(k − 1)1−γ

k
6 c

∞∑

i=k

i−1−γ . (4.4)

Since (4.4) implies (4.3), hence using Theorem 4.3 we have

Sn

n1/r
= O

(
βn

n1/r

)

a.s. (4.5)

Let ϑ(x) = xδ/r, where 0 < δ < 1 is a fixed constant. Then (4.4) and Lemma 2.4
imply βn/n

1/r = O
(
1/nγδ/r

)
. Hence we get the statement by (4.5). �

Corollary 4.6. Let r > 0, c > 0 and 1 < α < 2. If for all b ∈ N ∪ {0}, n ∈ N

E |Sb+n − Sb| 6 c
(√

b+ n−
√
b
)α

,

then
Sn

n1/r
= O

(

n−(1−α
2 )δ/r

)

a.s. for all 0 < δ < 1.

Proof. Apply Corollary 4.5 with γ = 1 − α
2 . �
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Abstract

The aim of the present paper is to give a very simple example how we can
set up a mathematical model describing a not too complicated phenomenon
based on measurement. It may help the beginners to model other systems
too, by differential equations. At the some time we would like to enrich the
possibility of demonstration in this field.
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1. Introduction

The authors of researches dealing with studying differential equations, compos-
ing them and differential equational models mention different examples as moti-
vations for example: multiplying bacteria, radioactive decomposition (exponential
growing), the nature of epidemic caused by infectious diseases, the spread of infor-
mation (logistical growing). What is common in these examples is the following:
it is not emphasized enough to get to know the system which is to be modeled
measuring has to be done, and these measurements serve as the base of principles
with the help of which we can describe the changes. In certain cases it can be
reasonable to choose such a phenomenon which can easily be supported by experi-
mental measuring and it is easier to be modeled than the others mentioned above.
One of the groups of solid materials is made up by crystalline materials. Beyond
the fact mentioned above, the practical importance of this may prove the studying
of the process of crystallization.
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Figure 1: Crystallization of Sodium Acetate in a test-tube.

2. Description and modeling of phenomenon

Due to certain properties NaAc is especially appropriate to make measuring
in connection with the process in order to understand the relation which serves
as the base of modelling. We pour the supersaturated solution of sodium acetate
(Na+CH3COO− or NaAc) into the test-tube. By adding a piece of crystal we can
start the process of crystallization. The speed of change is ideal (not too fast or
slow) and the change can be observed well. At the same time the experiment does
not require complicated tools and materials. So, this experiment can be carried
out even at home. All these facts make it possible to produce measuring of the
necessary promptness by using simple tools.

2.1. Mathematical model of one-dimensional case

As we wish to model the process of crystallization it seems to be natural that
we consider the amount of substance X(t) (number of moles) as state variable. On
the base of experimental measuring we suppose that α quantity of material getting
into solid phase during a given time is independent of the quantity of the solid
material and the time t:

X(t+ 1) −X(t) = α (t > 0).

By the next point of time the quantity of the solid phase is increased by α. Let h
denote the time spent between the two states, so that the problem can be described
in a more general way. If we select a longer time interval then more crystals are
created and vice versa so it depends on h:

X(t+ h) −X(t) = α(h) (t > 0).

On the base of experience it is obvious

lim
h→0

α(h) = 0.
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ti [sec] 0,0 3,0 6,0 9,0 12,0 15,0 18,0 21,0 24,0
Vi[cm

3] 0,0 1,3 3,1 4,9 6,5 8,3 10,1 11,9 13,5
∆Vi[cm

3] 1,3 1,8 1,8 1,6 1,8 1,8 1,8 1,6 -

Table 1: The measured volume of the growing crystal.
∆Vi = Vi+1 − Vi (i = 0, . . . , 7).
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Figure 2: Linear time-dependence of the volume.
(The measured values and the fitted line to them.)

On the base of the Table 1 and the Figure 2 we can assume that there is linear
proportionality between h and the increase. During a longer period of time greater
quantity of solid material is created. So ∃λ1 ∈ R (λ1 > 0), α(h) = λ1h:

X(t+ h) −X(t) = α(h) = λ1h,

dX(t)

dt
= lim

h→0

X(t+ h) −X(t)

h
= λ1,

where λ1 is independent on t and h, only it depends on a characteristic constant
of the system. So the phenomenon presented by the experiment can be described
by the following differential equation:

dX(t)

dt
= λ1 (λ1 > 0).

2.2. Exploration of the phenomenon

It is important to note that the speed of the growth of the crystal (the growth
of amount of substance of solid phase during a given period of time) depends on
the area of the crystal and the concentration of the liquid at a given moment.
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During the experiment we produced the supersaturated solution of sodium ac-
etate. Just like other ionic crystals sodium acetate has water molecules bound
within its crystal lattice. The quantity of this water characterizes the given ionic
crystals. In the case of NaAc 1 mole material has 3 moles water (NaAc·3H2O ≡
sodium acetate trihydrate). The water content of the salt escapes from the lattice
during the heating and the material dissolves in this water, that is why the pro-
portion of NaAc and the water is 1 : 3 in the supersaturated solution, too. The
process of crystallization is launched by the piece of crystal put into the liquid.
During the process the proportion of amounts of substances built into the lattice
will be the same, so the concentration of the liquid remains constant. Regardless
of the first short period of the process the surface of the increasing crystal which
is in contact with the solution, also remains the same. In conclusion, the surface
gets forward at an equal speed.

3. Two and three-dimensional extension of model

In the chemical point of view, the same changes can be seen in the case of
the well-known hand warmer. (During the heating the supersaturated solution
is produced. The launch of the crystallization is caused by the mechanical effect
which can be produced by the stainless metal sheet which is in the pad.) In this
case if we imagine the pad thin enough, we can idealize the phenomenon that the
growth of the crystal is carried out by the following way: starting from a given
point of a plain in concentric circles at an even speed. As we know, the speed of
the growth depends on the size of the surface of the crystal. In our model it is
proportional with circumference

K(t) = 2πR(t) (3.1)

of the circle.
We can interpret the result of experiment that the surface of the crystal moves

forward at an even speed where the R(t) root is proportional with the time spent.
The move of the surface of the solid material to a given direction of the space is

R(t) = ̺t. (3.2)

The quantity of the material built in the solid phase is determined by the radius
of the circle during h period of time:

α(h) = X(t+ h) −X(t) = βK(t)h.

(In the reality the shape of the crystal can be approached by a cylinder. The
surface of its lateral is the product of the height and circumference.) We can take
the length into consideration by selecting an appropriate beta constant.

By the relation of (3.1) and (3.2) we can see that α(h) is proportional with the
time spent in each moment of time:

α(h) = X(t+ h) −X(t) = λ2th (λ2 = 2βπ). (3.3)
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The expression (3.3) divided by h and h tends to 0:

dX(t)

dt
=
X(t+ h) −X(t)

h
= λ2t.

So the two-dimensional growth of NaAc-crystal can be given by the differential
equation:

dX(t)

dt
= λ2t (λ2 > 0).

If no mechanical obstacle can be experienced in the growth of the crystal it can
grow in each direction of the space then we can regard the growing crystal as
sphere-symmetric and the speed of the growth is proportional with the surface

F (t) = 4πR2(t)

of a sphere.
On the base of the facts mentioned above we can get the following differential

equation:
dX(t)

dt
= λ3t

2 (λ3 > 0).
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Abstract

Today the important ICT topics are taught with the help of various meth-
ods. Some of them are unsuitable for successful teaching-learning whereas
others may bring about success in certain age groups and class types.

Programming languages were first taught shortly after the appearance of
high-level programming languages. First it was done rather as an “art”, but
later more and more consciously and systematically. However, it should be
stated that the methods used in teaching programming languages, as “lan-
guages”, are far from being near to those of natural languages with respect
to their elaborateness, quality and, unfortunately, efficiency.

1. Introduction

The most important teaching methods of the various fields of information and
communication technology (ICT) have already been developed [15]. As ICT teach-
ing cannot boast with a long history, in most cases they have not been clearly
formulated, and their formation has not been so conscious but rather instinctive,
which results in the fact that most teachers do not use one single method but a
sort of blend of methods, where one of them is represented dominantly.

This methodological “uncertainty” also ensues that there are teachers who are
capable of teaching successfully even when they use a method labelled below as
being negative. The negative label can be principally explained by the fact that
these methods do not “automatically” ensure good teaching; what is more, it is
fairly easy to teach very badly when one relies on them.

Hereinafter the most widespread programming language teaching methods are
listed and reviewed:
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Statement-oriented (the language is seen as a set of statements, and the indi-
vidual elements of the set are taught in a certain order).

Using as a tool (when teaching programming and database management, it con-
siders the aspects of database-teaching to be of primary concern, and thus
introduces language tools in the necessary extent).

Software technology-oriented (a programming language teaching method ad-
apted to a software developing methodology and technology, where the meth-
odology motivates the choice of a language or even languages).

Task type-oriented (the method is identical with the one discussed at the pro-
gramming teaching method; it introduces new programming language knowl-
edge in a way that the problems to be solved necessitate).

Language-oriented (the method sees a language as a structural unit, bringing
the logic of the language to front, and introducing the concrete elements of a
language in the necessary extent and order).

Action-oriented (the statements of a language are taught in a way that it traces
them back to an implementation in another language – formerly to assembly
statements, now rather to other high-level languages).

Sample task-based (the method presents a language through an analysis of sam-
ple tasks).

2. Statement-oriented

The statement-oriented method defines a programming language as a set of
statements [1]. It conceives teaching a language as teaching the elements of a set.
(And to top it all, in alphabetical order, in the worst case.1) The idea of the set
also refers to the fact that each element of the set, i.e. each statement of a language
must be taught (which leads to a common ICT teaching delusion2). Nevertheless,
it is easy to foresee the depth of acquiring a language: it is only a mere set of lexical
elements lacking any connections among statements or with the modus operandi.

Neither does this notion promote deciding which elements are important and
which are not. Moreover, there is no guarantee that one will ever make any use of
the elements learned.

If one pictures a language this way, one can claim that a language is an un-
structured unity of elements and thus there is no need for any further knowledge
to construct programs from the elements: it will develop by “itself”.

1This idea evolved based on books on programming languages. These books have not yet
reached the advanced state of those on natural languages. In most cases the same book is meant
to be the manual of a given language (which is practically in alphabetical order), the language
coursebook, the dictionary etc.

2The notion of popular delusion see in [16].
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3. Applying as a tool

There are many programming teaching methods where program writing is more
or less an automated activity, and can be done with the help of coding rules and
coding conventions. In this case the programming language appears as a result of
the coding process. One always needs only that amount that one needs for coding
one’s algorithms [17, 13].

Let us see some examples for the above (Pascal encoding rules):

Algorithmic statement (with 

Hungarian keywords) 

Pascal code equivalents 

Be: variables [conditions] Repeat 

  write('question?'); 

  readln(variables) 

until conditions; 

Ha conditions akkor 

   statements 

 

  

   statements 

 

If condition then begin 

   statements 

 end  

else begin 

   statements 

end; 

 condition 

  statement 

 

While condition do begin 

  statements 

end; 

When using this method, it is guaranteed that the acquired language elements will later be 
When using this method, it is guaranteed that the acquired language elements

will later be used again. Since the structures, algorithmic elements and data types
recur regularly in programming craft, one can also state that the acquired elements
have to be often used.

4. Software technology-oriented

Relying on the above principle, Tibor Temesvári has constructed object-oriented
programming (OOP) and its implementation in the Pascal and C++ programming
languages. First, he discusses object-oriented programming in general (1. Char-
acteristics of OOP, 1.1. Classes and Objects, 1.2. Encapsulation, 1.3. Inheritance,
1.4. Implementation of Inheritance, 1.5. Using Inheritance, 1.6. Multiple Inheri-
tance, 1.7. Type Compatibility, 1.8. Polimorphism, 1.9. Dynamic Binding, 1.10. Vir-
tual Method, 1.11. Execution of Methods 1.12. Object-oriented Programming Lan-
guages), in which he does not touch upon concrete programming language knowl-
edge, but only deals with the object-oriented technology.

In Chapter 2 the above are followed by teaching the implementation possibilities
i.e. programming language skills (2. OOP in Pascal, 2.1. Planning, 2.2. Defining
a Class 2.3. Interface Part, 2.4. Implementation Part, 2.5. Self, 2.6. The Declara-
tion of Objects, 2.7. Using Objects, 2.8. Inheritance, 2.9. Procedure Calls Defined
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in the Ancestor, 2.10. Redefined Methods, 2.11. Virtual Method Table – VMT,
2.12. Constructors (procedures), 2.13. Dynamic Methods, 2.14. Dynamic Method
Table (DMT), 2.15. Type Compatibility, 2.16. Dynamic Objects, 2.17. Cleaning up
Dynamic Objects, Destructors). [18]

Similarly, some software technology (the OOP, database management, COM-
and web-programming) denotes the guideline of Delphi language processing in a
book by Marco Cantù: [8]. There is also a good example for this in the topic of web
design in a book by Kris Jamsa et al. [4]. New paradigms including aspect-oriented
and generic programming may also affect teaching programming languages. [10]

5. Task type-oriented

In this case the elements of a programming language are introduced because
they are needed in the process of problem solving. The various elements do not
turn up because some educational objective requires them, but because the next
task cannot be solved without them. [12, 19]

The task below comes from a class introducing PROLOG that we developed
(relying on Turbo PROLOG system):

Step 1: facts

one’sfather(father,child).

one’smother(mother,child).

Step 2: clauses

one’sparent(X,Y) if one’smother(X,Y).

one’sparent(X,Y) if one’sfather(X,Y).

Step 3: or operation in clauses

one’sparent(X,Y) if one’smother(X,Y) or one’sfather(X,Y).

Step 4: and operation in clauses

one’sgrandparent(X,Y) if one’sparent(X,Z) and one’sparent(Z,Y).

Step 5: recursion in clauses

one’sancestor(X,Y) if one’sparent(X,Y)

or one’sparent(X,Z) and one’sancestor(Z,Y).

Step 6: “any” value in the place of parameters

parent(X) if one’sparent(X,_).

Step 7: “not” operation i.e. negation in clauses
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notparent(X) if one’sparent(_,X) and not (one’sparent(X,_)).

Step 8: cut operation in clauses

oneparent(X) if parent(X) and !.

Step 9: display, and equally false formula in clauses

allparent if parent(X) and write(X) or fail or nl.

Step 10: equivalency check in clauses

twochilded(X) if one’sparent(X,Y) and one’sparent(X,Z) and

not (Y=Z).

Step 11: new programming skill without new language element

onechilded(X) if one’sparent(X,_) and not (twochilded(X)).

Similar examples can be found in the syllabus on teaching Logo programming
language developed at Eötvös Loránd University. Its subjects and the new language
elements to be learned in brackets are as follows:

• Drawing elementary shapes (forward, back, right, left, repeat)

• Constructing from shapes (learn, penup, pendown)

• Principles of making complex figures

• Circles, arcs (setpencolor, setpenwidth!)

• Recursion, trees (if)

• Line patterns, shape patterns (fill, setfillcolor, setfillpattern)

• Logo and the frame of reference (setx, sety, setheading)

• Fractals

An important development in teaching programming languages is that the
statement-oriented method is often merged with this one [20], since the abstract,
“crystal clear” know-how of the previous notion, which is free from programming
problems, are completed with the real-life experience of statements. It is the way
that makes the level of language teaching rise significantly!

6. Language-oriented

The language-oriented variant regards the language as a structured unit. It
examines the calculation model belonging to the language [2] (in primary and sec-
ondary education only von Neumann-principled, automaton-principled, functional,
and logical languages can be present). Then it reviews the main framework of the
build-up of programs e.g. in the Pascal language:
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Program name;

declarations

begin

statements

end.

Declarations: label definitions

constant definitions

type definitions

variable declarations

procedure and function definitions

Becoming familiar with the basic concepts used in a programming language and
their possible implementations in that language (e.g. compilation unit, program
unit, block structure, memory management, declaration evaluation, concepts re-
garding variables, concepts regarding type, parameter pass etc.) also tightly belong
to the build-up of a program [18].

The next step might be that certain elements of the language are examined and
it is given how the programming structures are implemented in that given language.
For example as for Pascal, one might claim the following about conditional loops
(before setting the concrete syntactic rules):

The Pascal language can have pre-test or post-test conditional loops. For pre-test
loops the condition is first evaluated – if the condition is true, the code within the
block is then executed. This repeats until the condition becomes false. On the other
hand, for post-test loops the exit condition must be set. The core of a pre-test
loop can be one single statement. If more statements are necessary, they must
be surrounded by statement brackets. Contrarily, the core of a post-test loop can
contain any number of statements.

Finally, only after the above can one give the syntax and semantics of the
statements. As opposed to higher education, in primary and secondary education
it is usually not a formal method that is used but a demonstration via examples. To
define syntax, only the format of the statement is given (pl. while condition do

statement). For semantics, however, smaller programs are used, through which the
operation of the given statement can be understood (with the help of the method
described in the next chapter).

It should be noted that in higher education this method is becoming more
and more widespread in demonstrating the possible elements of a programming
language, bringing examples parallelly from several languages [9, 18]. For instance,
the course Functional languages, taught by Zoltán Horváth at bachelor’s degree
courses for programmers at the Faculty of Informatics, Eötvös Loránd University,
follows the same structure. Of course, both the objective and the presupposed
basics are different from those in primary and secondary education.
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7. Action-oriented

Here the primary criterion is to understand how the statements operate i.e.
to make students able to visualize what happens when the statements are being
executed. In the simplest case one can give the statements of the language in
another known language, perhaps in assembly language.

The example explaining DO statement below comes from a classical FORTRAN
coursebook [6]:[LV]: 

 K=1 

17 T=0.0 

 J=1 

18 T=T+A(I,J)*B(J,K) 

 J=J+1 

 IF(J-N)18,18,20 

20 C(I,K)=T 

 K=K+1 

 IF(K-N)17,17,21 

21 

 DO 20 K=1,N 

 T=0.0 

 J=1 

18 T=T+A(I,J)*B(J,K) 

 J=J+1 

 IF(J-N)18,18,20 

20 C(I,K)=T 

21 

In a book on C# one can read the following explanation about the ++ operator [3]:
a = ++b; //  b = b+1; a = b; 

a = b++; //  a = b; b = b+1; 

The above examples show that one should not necessarily go back to another lan-
guage to describe the operation of a statement, but one can define it with the help
of other elements of the same language.

In a sense, a possible solution belonging here is when the semantics of the
elements of a new programming language is defined with the elements of a “well-
known” algorithmic language. This results in an extra educational profit: while the
elements of a language are demonstrated, the students can practise programming
in an algorithmic language, as well.

8. Sample task-based

According to this notion, if students are shown quite a lot of examples, they
will be able to acquire a programming language well [7]. Here is a quotation from
a book by Zsuzsanna Márkusz called “It is Easy to Write PROLOG Programs”:

“My PROLOG teaching experience has convinced me that the easiest way to learn
programming is through sample programs. Therefore, instead of any scientific
introduction (notations, definitions, theorems) the book foreshows twelve sample
programs, which are explained in great detail.”

Although it shows some resemblance to the task type-oriented method, their basic
principles are different. There the root of the matter is that the set of tasks makes
it necessary to introduce new language elements. As for this method, it is just the
opposite: the language elements are given in the tasks and their build-up follows
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the language elements. That is why it is not certain that the acquired language
elements will need to be used in the future and they might be forgotten if not
practised.

8.1. A short evaluation of the above methods

We think that the statement-oriented method is unsuitable for teaching pro-
gramming languages because a programming language is not equal to a set of
statements. Behind a programming language there is always an idea, and in order
to apply a programming language properly, it is inevitable to learn it3. Program-
ming languages use basic language concepts like type, block structure, parameter
pass etc., which might be different in various language types, or even in languages
and their knowledge is connected primarily not to statements, but to languages.
In each programming language a program has some structure, some constructing
rule.

The “Applying as a tool” approach is the one that is needed in algorithm- and
data-oriented teaching of programming, and thus this method can be used paral-
lelly with the above programming teaching methods, that is with teenage students
considering ICT as a carrier.

The software technology-oriented method is, actually, an improvement of the
previous one (applying as a tool) for higher education, ICT specialists’ education;
so it can be a very powerful method there. On the other hand, in primary and
secondary education it could have a role maximum in ICT vocational training.

The task type-oriented method is the only one that can be used in each level
of primary and secondary education, where the main objective is the implementa-
tion and try-out of algorithms, and not a thorough knowledge of a programming
language (quotation from the justification in the Hungarian National Curriculum:
It is enough to teach a programming language to that depth that is necessary for
implementing and trying out algorithms. The language itself is not a crucial part
of the ICT curriculum. [21]).

The language-oriented concept may be excellent to summarize the elements of
a language as completing language learning. For those considering information
science as a carrier, it is also possible to introduce a new language that is fairly
similar to the ones learnt before (e.g. after Pascal Delphi, C++ can be taught
this way; or after C++, C#, . . . ), as in this case the students’ previous language
knowledge can be used effectively.

The action-oriented idea greatly resembles to the statement-oriented one, since
it teaches statements, as well. On the other hand, here the definitions are given
on the level of the “operation” of statement (i.e. how they work) instead of their
“specification” level (i.e. what they should do). If used exclusively for beginners, it
will not bring any success.

Teaching with the help of sample tasks is a “medieval” concept. This way one
can train “artists” of programming and not its conscious doers.

3It is the “cost” of how to discover this world of ideas that qualifies the language itself. That
is why it has such special importance in education. [14]
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Note. The presentation of language teaching methods is somehow dangerous
when relying on books on programming languages. The reason for this is that
today the methodological background of books on programming languages is much
weaker than that of those on natural languages. That is why the same book dis-
cusses a language in several ways from several aspects.4
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Abstract

The evolvement of some geometrical concepts, such as parallel and per-
pendicular has been studied in a developmental teaching experiment in class
four whose aim was to put the model of geometry teaching according to van
Hiele into practice.

Our research question is how lower primary geometry teaching in Hun-
gary, particularly teaching the concept of parallel and perpendicular is related
to the levels formulated by van Hiele. Moreover to what extent are the con-
crete activities carried out at these levels effective in evolving the concepts of
parallel and perpendicular.

Our hypothesis is that in lower primary geometry teaching (classes 1–4)
only the first two stages of the van Hiele levels can be put into practice. By
the completion of the lower primary classes transition to level 3 is not feasible.
Although the set of concepts are evolved but there is not particular relation-
ship between them. The logical relationships between the characteristics of a
shape are not really recognized by children. They are not able to infer from
one characteristic of a shape to another.

Keywords: mathematics teaching, parallel, perpendicular

MSC: 00A35, 97D70, 51F20

1. Introduction

Teaching geometry in Hungary in the first four grades of primary school aims
at laying the ground to establish the skills through which learners can prepare for
gaining knowledge on their own.
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The basis of learning geometry is inductive cognition based on gaining knowl-
edge. Starting out from the concrete and gathering experience from various ac-
tivities will finally lead to the formulation of general relationships. The third ed-
ucational principle laid down by Farkas Bolyai also emphasizes the importance of
starting with the concrete: “(The teacher) . . . should always start with what learn-
ers can see and touch, and not with general definitions (it is not grammar that the
first utterance is based on) and he should not torture prematurely with longwinded
reasoning. . . We should start with geometric shapes and reading. . . and we also
should get out of the sheet. . . ” (Dávid, 1979)

In the framework curriculum what is particularly highlighted is the development
of orientation in plane and shape, the formation of geometrical knowledge through
recognizing geometrical shapes and the characteristics of forms and quantity as
well as simple transformations.

In lower primary the basis of mathematical concepts is laid down. In this paper
the development of the concepts of parallel and perpendicular is examined. In the
framework curriculum the requirements of the teaching material related to parallel
and perpendicular are as follows:

Grade 3 : Measuring angles with non-standard units.
Grade 4 : Producing plane figures by means of pairs of parallel and perpendic-

ular straight lines. Measuring angles with right angle, its half and its quarter.
In some course books the concepts of parallel and perpendicular are introduced

in various grades and in a different way. In a course book for grade 4. by C.
Neményi it is during the presentation of the opposite and neighbouring faces of the
rectangular solid and the cube that the concepts of parallel and rectangular are
introduced and then they move on to the plane. In the course books by Hajdu,
Török and Rakos these concepts are introduced in grade 3 when the position of pairs
of straight lines in plane are studied. In the book entitled “Colourful mathematics”
it happens in the same way, but only in grade 4.

The evolvement of some geometrical concepts such as parallel and perpendicular
has been examined in an educational development experiment conducted with grade
4 pupils. The results and the lessons of the experiment are described below.

1.1. Linguistic problems

“One of the most important objectives of school is to provide children with a
means i.e. language through which they will be able to learn, to think and speak
about the world in which they actually live. Or to be more precise we intend to
assist them to make this means they already possess more sophisticated.” (Holt,
1991)

Several children, like parrots, are able to repeat sentences containing technical
terms, but they have not the slightest idea about their meaning. As a matter of
fact this is what we would like to avoid. Some children on the other hand clearly
understand the mathematical concepts and problems but they are at a loss when
they should express their knowledge and thought in proper terms. Every one needs
some time to incorporate words describing concepts into their active vocabulary and
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they will be able to express their thoughts by means of proper terms. “Teachers can
assist the process of incorporating words into learners’ active vocabulary in a way
that they will not correct the improper language use all the time, moreover they
try to understand children’s any, even inaccurate utterances in order that children
could be able to become aware of their observations. But when the teachers want
children to use a ‘technical term’ they have already understood, it is practical if
they themselves repeat the utterance using the proper words.” (Szendrei, 2005)

According to Andre Revuz in every field of science, including mathematics, the
most fearful obstacle to understanding is the language barrier.

What kind of context is accessible to fourth grade learners? Is the language
of mathematics course books for lower primary learners suitable for the teaching
material to be acquired?

Here is a selection of sentences related to parallel and perpendicular from math-
ematics course books for grade three and four:

“Parallel straight lines do not share any point, their position and distance is the
same everywhere.” (Török, 2002)

“The length of perpendicular sections drawn between parallel straight lines is
the distance between parallel straight lines.” (Hajdu, 2005)

“The pairs of straight lines in plane which do not have a point in common, no
matter how much we make them longer , are called parallel straight lines.”

“Four angles made by two perpendicular straight lines are equal.” (Árvainé,
2005)

“The distance between parallel straight lines is everywhere the same.”
“Draw straight lines in a way that draw the lines along the two edges of the

square ruler that make a right angle.” (Rakos, 2002)
In the framework curriculum the proper and exact level of mother tongue and

technical terms suitable for the age group is emphasized. We wonder whether the
above sentences are suitable for the language use of learners.

2. Theoretical background

2.1. The levels of geometrical thinking according to van Hiele

Young children start gaining knowledge in geometry already in kindergarten
where the concept of geometrical objects (geometrical solids, plane figures) is being
established by examining the shapes of the objects in the environment. Establishing
the characteristics for the set of these objects implies a higher degree of gaining
knowledge. A large amount of references can be found on gaining geometrical
knowledge, but in this particular case we rely on van Hiele.

According to P-H van Hiele the process of gaining geometrical knowledge can
be divided into five levels.

At the level of global cognition of shapes (level 1.) children perceive geomet-
rical shapes as a whole. They easily recognize various shapes according to their
forms, they remember the names of the shapes however they do not understand the
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relationship between the shape and their components. They do not recognize the
rectangular prism in the cube, rectangle in the square, because these are totally
different things for them.

At the level of analysis of shapes (level two) children break shapes down into
components and then put them together. They also recognize the faces, edges and
vertices of geometrical solids as well as the plane figures of geometric solids which
are delineated by curves, sections and dots. At this level particular importance
is attached to observation, measurement, folding, sticking, drawing, modelling,
parquetry, and using mirrors. By means of these concrete activities children can
establish and enlist the characteristics of shapes such as the parallelism, perpendic-
ular of faces and sides, characteristics of symmetry, the presence of right angle etc,
but they are not able to define and to recognize the logical relationships between
the characteristics. At this level children do not perceive the relationships between
shapes.

At the level of local logical arrangement (level 3) learners are able to find re-
lationships between the characteristics of a particular shape or between various
shapes. They can also make conclusions from one characteristic of shapes to the
other. They understand the importance of determination, definition. However the
course of logical conclusions is set by the course book or the teacher. The need to
prove things is started, but it applies only to shapes.

Level four (making efforts to reach complete logical set-up) and level five (ax-
iomatic set-up) belong to the requirements of secondary and tertiary education.

In the van Hiele model each learning stage is constructed and enlarged by the
thinking established by the previous stages. Transition from one level to the other
happens continually and gradually, while children are acquiring the mathematical
terms according to the particular levels. This process is particularly influenced by
teaching, especially its content and method. For the suitable geometrical thinking
none of the levels can be omitted. Every level has its own language, system of
notation and logical set-up. From educational point of view it is highly relevant
in the theory of van Hiele that we cannot expect from learners at a lower stage
to be able to understand the instructions formulated in terms of a higher level.
According to van Hiele this is probably the most frequent reasons for failures in
mathematics teaching.

2.2. Concept formation

During the formation of a mathematical concept, the concept has to be fitted
into the system of concepts established before (assimilation) but it can happen
that the modification of the existing system or pattern is necessary for the fitting
of the new concept. The balance of assimilation and accommodation is absolutely
indispensable for the proper formation of concept. If this balance is upset i.e. as-
similation is not followed by accommodation then the learners’ own interpretations
find their way into their mathematical knowledge, which later on may lead to mis-
conceptions. Then the concepts formed in this way can be vague and inaccurate.

Teaching geometric concepts is as a matter of fact a long process. The principle
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of progressiveness should be observed, and accurate definitions should be estab-
lished but not by all means. Sometimes even at lower primary classes definitions
are provided in course books, although learners lack the required experience and
abstraction level. In this respect, what R. Skemp the mathematician and psychol-
ogist said is:

“By means of definitions it is impossible to transmit concepts to anyone which
are at a higher level than his knowledge, only by providing plenty of proper ex-
amples. Since in mathematics these examples mentioned above are almost all of
them various concepts, therefore we have to make sure that the learners have al-
ready acquired there concepts. Selecting the proper examples is a lot more difficult
than we suppose. The example should possess those common characteristics which
make up the concepts, but they should not have any other common characteristics.”
(Skemp,1975)

The evolvement of scientific concepts, such as parallel and perpendicular is
based on education. According to his observations Vigotsky came to the conclusion
that “in as much as the progress of teaching contains the proper elements of the
curriculum, the development of scientific concepts will proceed the development
of spontaneous concepts.” In the progress of teaching the special co-operation of
children and adults and the transmission of the teaching material in an order can
give an account for the premature achievement of concepts. According to teaching
experience it can be understood that the direct teaching of concepts is not really
possible. The mere acquisition of a new word verbally covers only emptiness.
In this case children acquire only words and not concepts. When children first
recognize the meaning of a new word then the process of evolvement of a concept
is being started. Scientific concepts are not acquired and learned “ready-made” by
children but these concepts are evolved and established through the active thinking
of children. The evolvement of spontaneous and scientific concepts is closely related
to each other. A basic requirement for the evolvement and acquisition of scientific
concepts is the proper level of spontaneous concepts. However the evolvement of
scientific concepts can also have an influence on the development of spontaneous
concepts.

Bruner’s representation theory is also based on activities: According to this
theory in order that learners could understand the teaching material, they should
“process” it intuitively before. According to Bruner every process of thinking can
happen on three levels:

a) enactive level: gaining knowledge through concrete practical activities and
manipulations.

b)iconic level: gaining knowledge through graphic images, imaginary situations.
c) symbolic level: gaining knowledge through mathematical symbols and lan-

guage.
Although in the lower primary grades the enactive and iconic levels are in the fore-
ground, but language (speech), which is the symbolic level, is also very important.
If we get round the first two levels there is a risk that learners due to the lack of
proper system of images will not be able to solve mathematical problems and to
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understand concepts at symbolic level, because they have nothing to rely on. If the
first level (the concrete, practical activities) is omitted, then the proper system of
images will not be established.

“The concept image is the total cognitive structure associated with the con-
cept name, which includes all the mental pictures and associated properties and
processes, pictures, graphs experiences”. (Tall, 2004)

In our teaching experiment learners have gained a wide range of experience of
the concepts of parallel and perpendicular through various concrete activities such
as modelling, folding, clipping and drawing. Thus, their concept image will be
versatile.

3. A developmental teaching experiment

3.1. Research question

The research question raised is what the relationship is between lower primary
geometry teaching including the teaching the concept of parallel and perpendicular
and the geometric levels according to van Hiele. Furthermore how efficiently the
concrete activities at these levels contribute to the establishment of the concept of
parallel and perpendicular.

3.2. Hypotheses

In lower primary (grades 1–4) geometry teaching can reach the first two stages of
geometric thinking according to the van Hiele levels. It is not feasible to reach level
3 by the completion of lower primary. Although sets of concepts are established,
but there is no relationship whatsoever between them. Actually children do not
recognize the logical relationships between the characteristics of a shape and they
are not able to draw conclusions from one characteristics of a shape to another.

3.3. Research methodology

It was in May–June 2006 that the teaching experiment was carried out whose
content and method was devised by the author, who also was involved in the lessons.
The teacher was a mathematics teacher and supervisor in class 4.c of the Practice
School of József Eötvös College in Baja, whose job was assisted by the author in
presenting, modeling and eventually raising supplementary questions or alternative
explanations. Both of them helped the pupils in carrying out and solving the tasks
in individual or pair work. Both checking and evaluation were done in cooperation.
During the developmental teaching the evolvement of several geometrical concepts
such as rectangles, squares, parallel, perpendicular and symmetry was examined
but here we are going to present the formation of the concept of parallel and
perpendicular.
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The developmental teaching experiment included 16 lessons and the aim was to
put the van Hiele model of geometry into practice. In the first lesson a pre-test was
done by 26 pupils of class 4 so that we could see that the transition from level 1
(the global recognition of shapes) to level 2 (the analysis of shapes) and the further
development of geometric thinking is feasible. When compiling the pre-test, the
syllabus of class 3 and the comments of the mathematics teacher were taken into
consideration. The first lesson of the development teaching experiment was also
the first lesson of the geometry topic as well.

3.4. Pre-test

The task of pre-test 3.was to reveal the conceptual level of the right angle and
the angle smaller and bigger than right angle. The task for the children was to
decide about angles of seven plane figures as to which of them are right angles,
smaller or bigger than right angle and they coloured the angles red, blue and green
respectively.

The angles of the plane figures below were examined by the children:

Figure 1: Pre-test

The results are shown in the following table:

The size of every angle is correct. 30.8%
Every right angle was marked properly. 46.2%
One mistake in finding right angles. 15.4%
Right angles were marked properly only in squares end rectangles. 26.9%
Every acute angle and obtuse angle was properly coloured. 30.8%
Two or more mistakes were made in finding acute angles and obtuse angles. 69.2%

As it is revealed by the data the concept of angle needs further development.
Almost 70% of the learners made mistake in establishing the size of angles. They
proved to be most successful in designating right angles, almost half the group
came up with the right solutions. However we still cannot be satisfied with this
result.

Tasks related to parallel and perpendicular were not given since children were
not familiar with these concepts.
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3.5. A developmental teaching experiment

When compiling the teaching material the principle of gradualness was observed
and the problems were made more and more difficult. During the first lessons we
focused on the characteristics of rectangular solids and cubes. When examining
the position of opposite and neighbouring faces the new concept of parallel and
perpendicular were introduced. In case of various solids the position of the opposite
and neighbouring faces were examined then after spreading the solids we moved on
to the plane. In the plane first learners came across with parallel and perpendicular
when studying the opposite and neighbouring sides of rectangular and squares.

The detailed description of the lessons can be found in the supplement.
When designing the lessons what we considered of utmost importance was that

children could discover geometrical concepts first through concrete experience in
real games and activities, later at visual level (drawing) then at an abstract level.

3.5.1. Concrete, manual activities

a) Showing parallel/non-parallel using both hands in various positions.
b) Showing perpendicular/non-perpendicular using both hands in various posi-

tions.
c) Producing perpendicular/non-perpendicular position with the leaves of the

course book.
d) Finding the opposite and neighbouring faces of the regular pentagonal prisms

and square based pyramids, studying their position from the point of view of par-
allel and perpendicular.

e) Producing plane figures from two coincident right angled triangles. Studying
the parallel and perpendicular opposite and neighbouring sides of the quadrangles
produced in this way.

f) Demonstrating parallel and perpendicular pairs of straight lines in plane
by means of two skewers, also demonstrating non-parallel and non-perpendicular
straight lines.

Etc.
Minutes were taken of every lesson, in which the children’s responses were also

recorded. When examining the position of the faces of the regular pentagonal prism
the following conversation took place:

-Show me please which face is opposite this lateral face? What do you think,
Petra?

-This one and that one. (She pointed at the two non-neighbouring faces.)
-Are the opposite faces parallel or not?
-No, they aren’t.
-Why not?
-Because they are slanting. . .

-Are these two neighbouring lateral faces parallel or not? (The teacher pointed
at them.)
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-They are not parallel because they meet.
-Are they perpendicular to each other?
-No, they aren’t.
-Why not?
-Because they do not make a right angle, I have checked it with a folded right

angle.

In task f) when demonstrating the parallel position, after considering several
solutions, Szabolcs came up with the following statement: “It did not matter either
how far the skewers were from each other.”

Beside the examples demonstrating the concept, examining counter examples
is also essential in order to establish a clear-cut concept. After analyzing several
examples and counter examples children will reach the level, where they will be
able to recognize the essential characteristics of a concept and they will able to
differentiate between the essential and the irrelevant characteristics.

3.5.2. Visual tasks

a) Drawing parallel and perpendicular pairs of straight lines on grid.
b) Drawing various triangles on grid and colouring the sides perpendicular to

each other.
c) Colouring the parallel lateral pairs of various plane figures, designating right

angles.
d) Drawing quadrangles of given characteristics.
e) Sorting out plane figures according to given characteristics.
Etc.

In task c) when colouring the parallel sides of a general trapezoid, the following
conversation took place between the author and the child called David:

“You haven’t coloured anything in this quadrangle. Haven’t you found parallel
straight lines?”

“No, I haven’t.”
At this point the teacher in order to help the child placed the skewers on the two
bases, thus David could see that they do not meet. David made the following
remark:

“It is true that the skewers do not meet, but the sides are not of equal length,
thus they cannot be parallel.”

“But this was not a condition for parallel.”
Then David said:

“Well, in this case, they are parallel.”
Then he corrected the mistakes, which may have come from the fact that most
of the time was devoted to the characteristics of square and rectangle. In these
quadrangles beside the fact the opposite sides were parallel, they were also of equal
length. David probably connected these two characteristics.
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3.5.3. Abstract level

After gaining experience at the previous two levels the characteristics of various
geometrical shapes were summarized at an abstract level:

-in case of solids, especially cubes and rectangle prisms counting the number of
faces, edges and vertices repeatedly, determining the length of edges, the parallel
and perpendicularity of faces and edges, and the number of symmetry planes;

-in case of polygons, especially squares and rectangles counting the sides and
vertices repeatedly, examining the length and parallel and perpendicularity, de-
termining the number of symmetry axes, and the size of angles produced by the
neighbouring sides. Obviously the geometric characteristics were studied through
models or the visual representation of the given shape.

Twenty questions is one of the favourite games among children, which is also
suitable for practising the characteristics of solids and plane figures. During a
game what the children had to guess was the rectangle. These are the questions of
a game:

-Does it have five vertices?
-Is it a quadrangle?
-Does it have a right angle?
-Are the opposite sides parallel?
-Does it have a symmetry axis?
-Does it have two symmetry axes?
-Are the sides of the same length?
-Does it have perpendicular sides?

At this point the teacher said they could have guessed it from an earlier question.
-Does it have several right angles?
-Does it have four right angles?

Finally they found out what it was.
During the game of twenty questions we wanted the children to realize that

instead of just guessing it is a good strategy to limit the options. We had to
convince them that they should not be afraid of asking questions and they should
also see that some questions are more purposeful than others and “no” to a good
question is just as good as a “yes”. Moreover it is no use asking a question when
they already know the answer.

3.6. Post-test

The developmental teaching experience was completed by an evaluation work-
sheet, which was filled in by 25 learners in class 4.c, 23 learners in class 4.a and
24 learners in class 4.b respectively. In these latter two classes the mathematics
teacher - supervisor was another teacher.

In the worksheet it was only the questions related to the establishment of the
concepts of parallel and perpendicular that were evaluated.

In the task of recognizing the parallel and perpendicular lateral pairs of faces of
polygons, children were asked to examine nine shapes. They also did the following
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tasks:
a) colouring the parallel sides using the same colour;
b) colouring the right angles red;
c) enlisting the letters designating the plane figures which have parallel sides;
d) enlisting the letters designating the plane figures which have perpendicular

sides.
The following polygons have been examined:

Figure 2: Post-test

The results of the tasks are shown in the chart below:

Figure 3: Correct solutions

In the experimental group children’s best results were gained in colouring right
angles. It was in grade 3 that they came across this concept and it was further
developed in grade 4. The outcome of the experiment is shown by the fact that the
number of learners who correctly marked the right angle increased from 46% in the
pre-test to 76% in the post-test. The results in the control group were significantly
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worse, 26% and 37% respectively. The difference between experimental and the
control group was also considerable in the recognition of parallel and perpendicular
lateral pairs.

In the task of the worksheet related to the characteristics of squares and rect-
angle children were asked to underline the statements which were true for

a) squares:
Its opposite sides are parallel.

Its opposite sides are perpendicular.

The neighboring sides are parallel.

The neighboring sides are perpendicular.

Every angle is right angle.

Not every angle is right angles.

It has exactly two symmetry axes.

It has four symmetry axes.

It has 8 symmetry axes.

Its every side has same length.

Its opposite sides have same length.

b) rectangles:

Its opposite sides are parallel.

Its opposite sides are perpendicular.

Its neighboring sides are parallel.

Its neighboring sides are perpendicular.

Its angles are all right angles.

Its angles are not all right angles.

It has four symmetry axes.

It has four symmetry axes.

The diagonals are symmetry axes.

Every side has same length.

The opposite sides have same length.

In the evaluation of the tasks we have focused on only the results without any
mistake. In the experimental group all the true statements related to the properties
of the square were chosen by 52 of the pupils, whereas in the control group the
results were 35% and 42%. In case of rectangle the results were as follows: In the
experimental group it was 64% in the control groups 39% and 70%. The mistakes
can be due to the misunderstanding of the terms ’opposite’ and ’neighboring’ on
the one hand and in the fact the concepts of parallel and perpendicular were not
firmly established.

During the developmental experiment only the initial steps were taken to es-
tablish the concepts of parallel and perpendicular.
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4. Conclusion

The developing teaching experiment guided by the author efficiently contributed
to the establishment of the concept of parallel and perpendicular, and the com-
parison of the results of the pre-test and the post-test also supported the above
finding. In the experimental group the results were significantly better than in the
control groups. Our findings are related to only the samples examined, which are
not representative, and therefore no statistical trials have been carried out. The
data measured, the interviews and the games support the hypothesis that it is not
possible to reach level 3 of geometrical thinking according to van Hiele by the com-
pletion of lower primary (the first four classes of primary education), only reaching
the first two levels is feasible. Children are not really able to make conclusions from
one characteristic of the figures to the others. They cannot find the relationships
between the characteristics of a given figure.

The cognition of children of 6–10 years olds is highly attached to real life, which
is why during the formation of concepts only starting out from concrete, manual
activities and examples taken from their immediate experience is it possible to
reach the level of abstraction. A large number of examples and counter example
and making the concept concrete several times and modelling are the preconditions
that make it possible for children to recognize the essential characteristics of a
concept and they could reach the level of abstraction.

As György Pólya said: “We should not pass up anything that could bring math-
ematics closer to students. Mathematics is a very abstract science and this is why
it has to be presented in a very concrete way.” (Pólya, 2000)

5. Supplement

Lesson 1 : Pre-test.

Lesson 2 : Naming and describing rectangular objects, such as matchboxes,
cupboards etc, the number of vertexes, edges and sides, comparing the length
of edges, the shape and the size of the sides, understanding what opposite and
neighboring sides are and their position. Naming and describing cubic objects: the
number of vertexes, edges and sides, comparing the length of the edges, the shape
and size of sides, understanding what opposite and neighboring sides are and their
position.

Lesson 3 : Giving a list of the characteristics of rectangular prisms and cubes
by means of models. Making up various rectangular prisms using four matchboxes.
Producing the reflections of the solid made from matchboxes. Finding objects in
symmetrical arrangement in the classroom. Listing symmetrical objects. Defining
the position of the planes of symmetry in case of various solids.

Lesson 4 : Defining the position of the planes of symmetry in rectangular prisms
and cubes. By using a model, learners studied the parallel and perpendicular
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position of the opposite and the neighboring sides of rectangular solids, regular
pentagon prisms, quadrilateral pyramids. Spreading rectangular prisms and cubes,
examining the shape and size of the sides. Cutting squares from rectangles.

Lesson 5 : The various grids of cubes. Studying the rectangles. The number of
vertexes, opposite and neighboring vertexes, diagonal. Cutting the rectangle into
two along the diagonal. Producing other plane figures by fitting the triangles gained
in this way, and naming them. Gathering experience on plane figures and describing
them. Further study of the rectangles: the number of sides, comparison of their
length, determining the opposite and neighboring sides, the parallel position of the
opposite sides, the perpendicular position of the neighboring sides. Measuring the
sizes of angles by means of folded right angles.

Lesson 6 : Studying the characteristics of plane figures made from two con-
gruent right-angled triangles during the previous lesson: the number of vertexes
and sides, defining the opposite and neighboring vertexes and sides, comparing the
length of the sides, studying the parallel and perpendicular position of the opposite
and the neighboring sides, the size of the angles. Comparing the characteristics of
rectangles and parallelograms and highlighting their differences. Studying squares:
the number of vertexes, opposite and neighboring vertexes, the diagonal. Cutting
the square into two parts along the diagonal. Producing plane figures from the two
right-angled isosceles triangles. Further study of squares: the number of sides, com-
paring their length, opposite and neighboring sides, the parallel and perpendicular
position of the opposite and neighboring sides, the size of the angles.

Lesson 7 : Demonstrating parallel and perpendicular pairs of straight lines as
well as straight lines which are not parallel and perpendicular. Producing plane
figures cut out from paper without restriction, and describing their characteristics.
Listing the characteristics of rectangles and squares. Producing planes figures from
the 2, 3, 4 and 6 regular triangles from the set of logics, which consists of 48 various
plane figures, which can be red, yellow, blue or green. Their sizes are, small or large,
their shape can be circle, square or triangle, their surface can be smooth or there is
a hole in them. Making observations on parallel pairs of sides. Producing rectangles
of different length and identical height from strips of paper.

Lesson 8 : Producing various plane figures from paper strips by one cut. Nam-
ing them and describing their characteristics and shared characteristics. Cutting
general rhombus from rectangle, its characteristics. Cutting general deltoid from
rectangle, and its characteristics. Making rectangles and then the “frame” of a gen-
eral parallelogram from six match sticks. Making squares then general rhombus
from four match sticks. Comparing the characteristics of squares and rhombuses.

Lesson 9 : Comparing the characteristics of squares and rectangles. Making 2
rectangles, a pentagon and a triangle, a triangle and a quadrangle, 2 quadrangles
and 2 triangles from a rectangle by one cut. Drawing squares on square grid.

Lesson 10 : Drawing various quadrangles on square grid. Drawing various tri-
angles on grid. Drawing parallel and perpendicular pairs of straight lines.
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Lesson 11 : Coloring the parallel pairs of sides of the quadrangles drawn on grid
and designating the right angles. In triangles coloring the sides perpendicular to
each other. Drawing quadrangles according to given requirements. Studying the
structure of the edges of rectangular prism and cubes. Observing the parallel and
perpendicular edges.

Lesson 12 : Producing reflection on plane through activity: folding a painted
sheet of paper, on a black photographic paper folded into two making a pattern
by running a pin through it, then unfolding it holding it in the direction of light.
Cutting a given pattern from a sheet of paper folded into two parts. Observing
reflections. On grid reflecting given figures on given axis. Producing figures sym-
metrical on axis by clipping.

Lesson 13 : Finding the symmetry axes of plane figures cut out from paper by
means of folding and mirror. Formulating experiences and observations. Drawing
plane figures which have no symmetry axis, and which have exactly 1, 2, 3 and 4
symmetry axes.

Lesson 14 : Producing figures symmetrical on axis on square grid. Selecting
plane figures according to given characteristics. Formulating statements “every”
and “there is such. . . ”.

Lesson 15 : Selecting plane figures according to given characteristics. Estab-
lishing the logical validity of statements. Drawing plane figures according to given
requirements. Twenty questions.

Lesson 16 : Post test.
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Abstract

The education of the forthcoming generation is always a difficult task.
This is particularly true for those educational institutes where students re-
quiring special treatment are educated. These students are educationally
challenged, mentally challenged or multi-challenged. In this article we present
a Socrates-Comenius project which is dedicated to aim the usage of the infor-
mation and communication technologies in the everyday educational work for
students demanding special training. It is a fairly interesting and responsi-
ble challenge to discover how the computer could help to overcome difficulties
and disadvantages which derive from handicap. On the other hand we present
an international co-operation lasting for three years which prime goal was to
construct a non-language-dependent software for handicapped children. In
the article we introduce the institutions taking part in the development, the
process of the program’s creation, the steps to apply the program and the
possibilities and methods of improvement.

Keywords: special educational, ICT, Technological tools, Manipulative ma-
terials

MSC: 68N01, 97U50, 97U60

1. Introduction

In the governing-principles of the European Union the use of information tech-
nologies in the public education is a highly supported area. The program of
people living with disabilities and handicap has been appearing more and more
emphatically in the educational program of the European Union. This program
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enables the institutions of the participating countries to get financial support in
order to proceed to work for their common desires and purposes. The generation
of the planned project was inspired by the common interest and the mentioned
governing-principles. To the partner Countries- The Netherlands, Germany, Latvia
and Poland- joined Spain, Greece and Portugal as well. The common work started
in 2004. The role of coordinator was accepted by the director of the Dutch insti-
tution.

1.1. The targets of the project

We set up as a common purpose to create a software for children requiring
special education which is independent of any languages and cultures. The program
is expected to:

• be able to adjust to national languages

• be adjustable to the type of handicap

• be improvable independently

• be applicable to any languages of any country

• that’s why it should not demand the usage of it’s written language in any
conditions

• to adjust to the demands of the children

• It’s content should be easily changeable and reedit able according to the
required field of improvement.

It is also a part of the project to discover the partner institutions’ level of
knowledge in connection with informatics.

1.2. Introduction to concepts

“Handicap is the basic concept of the education of the handicapped. It marks
that attribution or group of attributions which make a child be in need of education
of the handicapped services.” [1]

The new terminology calls it: specific educational demand. Mental deficiency/
handicap and special need: these two concepts spread in the educational and ped-
agogical word use. The difference between the two definitions is huge. Handicap
refers to negative property, errors are assumed in the child. Special educational
need is about demand. What do we mean by the phrase handicap?

Handicap is defined in various ways in Hungary as well:

• Mentally-handicapped individuals are those whose nervous system or any of
their sense organs are injured and that’s why their process of development
differs from the development of healthy ones. [2]



The usage of adapted ICT . . . 191

• Handicap means a sequence of parameters which is usually extensive and
defines the condition of an individual for a long time period.[3]

The categorization is based on the WHO system:

• The impairment is any kind of disorder in the psychological and physiological
structure of a person.

• Handicap is altered and reduced capabilities of humans’ certain activities.

• Detriment/disadvantage is the most serious, which derives from impairment
or handicap and also means a kind of social disadvantage. So detriment is
nothing else but the process when impairment and handicap become social
factors. [4]

These days there was a significant change in the definition as the terminology
defines it as special educational need. The emphasis was shifted to the need of
special training, education, improvement and rehabilitation of a specific individual.
The formation of this new view was prepared by many effects. The principle of
normalization, the recognition of rights of handicapped children and the spread of
inclusive school which evolved from the experience of integrated schooling. [5]

The European definitions slightly differ from the previous one. This is the
ISCED system which was worked out by the UNESCO. The population of students
who are affected by these problems can be subcategorized to three main categories:

• Those students whose learning difficulties compared to normal students have
physiological origins. These are the different medical cases of organic disor-
ders.

• Those students, whose learning difficulties are not possible to be properly
explained, can’t be directly joined to this factor.

• Those students, whose difficulties derive from different problems from their
surroundings, namely socioeconomic, cultural/linguistic demands are not pos-
sible to be satisfied.

The following graph shows the ratio of students requiring special training in the
population of school-aged students in the countries taking part in the project.

The autism is a so called pervasive development disorder, which covers three
areas. The typical symptoms are the following: disturbance in establishing new
relationships, language-communicational disorders, injury of those cognitive abil-
ities which are in connection with the fantasy. Autism is defined as a so called
spectrum disturbance because of the diversity of symptoms. Namely it’s intensity
can be quite various. For example: If we analyze mental abilities it can show men-
tal handicap or high intelligence rate as well. The following can be read about
the multi-handicapped children: It is a stage which comes into existence because
of the effect of one or more biological injuries or impairments which can occur at
the same time or independently from each other. It’s result is a kind of defect
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Figure 1: The population of school-aged students

expanding to several function areas. [5] The LXXIX. act in 1993 has set up educa-
tional obligations for the multi-handicapped people as well. During their education
we have to concentrate in particular on their special needs, the reduction of their
defenselessness and dependence, the development of the conditions of their com-
municational initiations. The capability of communication is the most important
ability of humanity. It is difficult for a human to survive without it. By the help
of this ability people create relationship with other people. The quality of this
ability, and the impoundment of this ability affects a human’s quality of life. [7]
In the case of multi-handicapped children their evolutional disability makes their
communication more difficult. That’s why they need direct help and support to
form their speech and to practice.

1.3. The introduction of the project

The participating countries in the project in Table 1:

In the project all of the eight institutions participated, each institution had
one group of children with a membership of Six to eight with various ages. As
one of our prime purposes was to develop the different areas of communication,
so the participating children in the work were primarily multi-handicapped and
autistic children. In both injuries the development of communication is a highly
emphasized area. Unconventionally the program was not created only for them but
they were the first users.
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The Netherlands -
Emiliusscool - Son en
Breugel városa

Three to twenty year-old multi-handicapped chil-
dren are educated.

Germany - Eberhart
- Shomburg - Scule
Latzen városa

Children between six and eighteen are educated.

Latvia - Berzupes Spe-
ciala Internatskola -
Dobele városa

Children are between six and eighteen year old.

Poland - Szkola Pod-
stawowa Specjaina -
Gubin városa

From six to fourteen-year-old mentally handi-
capped children and autistic children are trained
and educated.

Greece -Special School
of Seress

Four to fourteen year-old children are accepted to
attend the school.

Portugal - Pais e Ami-
gos do Cidadao Defi-
ciente Mental - Mari-
hna Grande városa

The pupils study in class system between six and
fifteen years meanwhile special support is given.

Spain - Frederico Gra-
cia Lorca Centros -
Madrid-Alcobendas

Accepting children from the age of three to the
age of fourteen.

Hungary - Benedek
Elek Óvoda, Általános
Iskola, Speciális Sza-
kiskola és EGYMI -
Budapest

The education and upbringing of two hundred
twenty-four mental-handicapped children is orga-
nized from the age of starting the nursery school
to the age of entering special vocational schools.

Table 1: The participating countries in the project

1.4. The provision of appliances in the institutes

We decided to be a special part of the project to discover the level of knowledge
in connection with informatics in the partner institutions. In order to reach this
goal every institution filled in a questionnaire. The result of the survey from country
to country.
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Country Result
The Nether-
lands

In the institution a computer lab operates with 10
computers. Moreover two computers are placed
in every single classroom. One is used for educa-
tional purposes and the other one is for adminis-
tration. Every computer has internet connection
and web camera. In addition five notebooks are
provided for the colleagues and ten for the chil-
dren. In everyday education work projectors are
used and they also have 3 digital boards.

Germany In every single classroom there is a computer with
a printer, which is used in everyday education. In
addition they have four very well equipped com-
puters which are used by the teachers for admin-
istration and preparation for the lessons. Three
computers are situated in the corridors, which can
be used during the breaks and after the lessons.
All the computers have internet connection.

Latvia The institution owns one computer room where
ten computers can be found. These machines are
applied for educational and administrative pur-
poses as well. In every day work they do not use
information technology appliances. In the insti-
tution only one computer has internet access.

Poland The institution possesses five computers. Four
out of them are used for educational purposes but
exclusively for individual development work. One
computer is for the colleagues to execute adminis-
trative tasks. They also have a digital camcorder
and a digital camera.

Greece Every classroom has computers but these are used
only during the individual work. Moreover two
highly equipped computers are available for the
educators with internet connection to organize
the administration. Other information technol-
ogy appliances are not used during their everyday
work.

Spain In the institution a special classroom of computer
studies operates with twelve computers. More-
over they use two computers in every classroom
for educational purposes. For administration du-
ties four computers are used. For their everyday
work they can also use projector, digital camera,
digital camcorder and web-camera as well. Every
computer has internet access.
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Country Result
Portugal They possess a special classroom, where three

modern computers are ready to be used with in-
ternet access for conducting educational and ad-
ministrational roles. In addition computers can
be found in four classrooms. They have digital
camera and digital camcorder as well.

Hungary In the institution two highly equipped computer
room can be found. Thirty-two computers are
ready to be used for class educational purposes.
The developer educators and speech therapists
can also use three computers for their everyday
work. Educators can use two computers for ad-
ministration. For everyday educational roles, a
projector, an overhead projector and two digital-
boards are used. Every computer has internet
access.

Table 2: The result of the survey from country to country
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The questions were asked from the workers of the institutions and concentrated
on the level of ICT knowledge, preparedness, their use of appliances and their
expectations about the project and the partner institutes. The pedagogues, who
take part in the project, were sorted according to their personal declaration about
their qualification of informatics.

Country Qualification of the pedagogues Count
The Nether-
lands

Beginner user 15

Intermediate user 80
Professional user 10
Renewing purpose(programmer) 5

Germany Beginner user 6
Intermediate user 9
Professional user 3
Renewing purpose(programmer) 1

Latvia Beginner user 14
Intermediate user 4
Professional user 1
Renewing purpose(programmer) -

Poland Beginner user 2
Intermediate user 8
Professional user 3
Renewing purpose(programmer) -

Greece Beginner user 7
Intermediate user 3
Professional user -
Renewing purpose(programmer) -

Spain Beginner user 21
Intermediate user 12
Professional user 1
Renewing purpose(programmer) -

Portugal Beginner user 4
Intermediate user 8
Professional user 1
Renewing purpose(programmer) -

Hungary Beginner user 35
Intermediate user 18
Professional user 3
Renewing purpose(programmer) -

Table 3: The result of the survey from country to country
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2. The use of ICT appliances in the education of the

handicapped

The cognition of computer catered new perspectives for the education of the
handicapped. An instrument/application got into our possession which is not
specifically a mean of the education of the handicapped, but it is a fairly usable
appliance in everyday work processes. This appliance possesses those properties
which enable us to improve those abilities of our students which are missing or
weak, without making them stigmatized. As the most crucial and complex point of
the education of the handicapped is that the curriculum and therapy is optimized
for children. That is why we have a unique opportunity in our hands with the use
of computer.

The advantage of using informational and communicational techniques in the
education is that it helps students to improve according to their own speed, it put
an end to the sharp differences/boundaries among subjects and it also improves
creativity. Adoption ICT in the life of an institution, which uses special curriculum,
is crucially important. It enables injured and handicapped students to study in an
easier way and more efficiently. If we assert that there isn’t any child who is iden-
tical to another, so this is exponentially true for children with special educational
need. The differentiated education-training is the only possible way for them to
complete a successful career at school. Applying information technologies makes
development work even more intensive.

Computer programs are excellently suitable for waking up the interest of hand-
icapped children. Computer is an interactive appliance. If someone carries out
an operation the computer reacts. All the humans like if there is a reaction after
his/her work. This is crucially important in case of those people who got used to
the fact that they can only carry out their activities if they rely on the help of
other people. During our work one of the highlighted areas is the development of
communication. Computer is not an aim but a mean. It doesn’t substitute real-
ity, but it helps to get to know, to discover reality in those cases when there are
obstacles to discover it.

ICT can carry out numerous tasks in the fields of special education. IT can be
used as:

• a mean of teaching

• a mean of studying

• a mean of communication

• an aid of therapy

• an aid of diagnosis
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3. The presentation of the software

During the three-year-period from the autumn of 2004 to the autumn of 2007
8 special schools were working on creating and developing computer programs for
students who suffer from learning problems and for handicapped students. These
programs, which are created according to these principles, have to fulfill two re-
quirements:

The software should not be too “childish”, low-leveled.

The software can not be too difficult neither in it’s content, nor in it’s handling.

During the time period which was mentioned above the creators of the program
were trying to find the clue of the following question: what kind of content would
be attractive and inspiring for students learning in a special education school.

The development of communication skills is a long term task both for the autis-
tic children and for the multi-handicapped children as well.

It is difficult for them to add meaning to cognition. Interpretation and under-
standing are limited. As verbal communication can be too abstract for them, we
can help them with visual communicational means/tools to understand the con-
nections between symbols and meanings better. During the process of our work we
are making efforts to focus on these viewpoints.

In order to make the program possible to be used by handicapped children, the
program offers two choices: we can choose between single-, and double-buttoned
mouse use in the starting screen. The screen itself also functions automatically,
thus we can choose between the two types of mouse use by clicking on the left
mouse button at the appropriate time. In this way students can select type ,which
is adequate for them, by themselves.

Figure 2: Select type

Other functions:
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• By pressing any of the buttons the program returns to the main page

• Clicking on the speaker the program repeats the exercise.

• By Clicking on the “right arrow” we can step back to the exercise-choosing
menu.

• If we click on the left-arrow we stay at the same level but we can choose again
from the exercises.

• If we click on the “door” we can exit- when we click a new page appears where
we have to confirm that we really want to exit.

• By clicking on the ALT and F4 buttons simultaneously we close the program.
In the 8-picture version we can choose among four types of exercises.

Picture-book: memorizing task. The child can see the picture and hear the
expression which belongs to it.

Reconciliation: comparative, conciliatory exercise, during this exercise one
picture has to be chosen from the three minor ones which matches the major
picture.

Lottery game: the child has to rely on the heard information to choose the
suitable one from the pictures

Memory game: includes four different level conciliatory exercises.
Exercise types in the 24-picture version:
Picture-book: This is the learning phase, where we simultaneously see the

picture and hear the sound which belongs to it. Listed under the adequate main
concept.

Practice: This is also used for studying pictures and their names arranged to
the adequate main concept. In the center a larger image can be seen, on which the
main concept is situated. Around this larger image pictures can be found which
belong to it. If we click on the picture we can hear their names again, meanwhile
we see the enlarged picture.

Grouping: the student has to drag the picture into the suitable group.
Riddle: Which picture belongs to where? The pictures have to be taken into

the correct group on the grounds of heard sound or observable picture.
In both formats a child gets feedback about his/her efficiency by using the

same principle. In case of false or incorrect answer the student gets a short verbal
instruction to try to solve the task again. In case of a correct answer the student
gets a verbal affirmation or approval and at the end of the exercise a present is
given, such as: a picture, sound or a short video is played.

Thus the format of the program includes 8- 8 and 24- 24 pictures and sounds
belonging to them. To alter the inner content it is enough to change these with a
simple copy operation. In this way teachers can easily prepare for their daily work,
the help of a programmer is not needed.
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The participating institutions in the project filled the program with their own
inner content according to the field of improvement, the goals and interest of chil-
dren. Some examples of the possibilities:

Social knowledge/Social science

Figure 3: Social knowledge

Fruits-vegetables

Figure 4: Fruits - vegetables

4. Altering the inner content of the program

Thus the format of the program includes 8–8 and 24–24 pictures and sounds
belonging to them. To alter the inner content it is enough to change these with a
simple copy operation.

Recording sounds. Sounds are possible to be recorded with the use of AUDAC-
ITY program:

• The program has already been copied from the CD, so we search for it in the
folder

• We install the program by clicking on the SETUP icon, if it is needed, or:

• We start the program by using the headphones-like icon

• For use microphone is required



The usage of adapted ICT . . . 201

• Button with red spot → record

• Button with yellow square → stop

• Button with green arrow → play

• Double blue-lined button → pause

• scissors → cutting (the selected part is cut out from the recorded sound)

• IssI : those sounds are cut out which are not selected

• ssI-Iss → the selected part is cut out in a way that it is transformed to silence

• left and right arrows → the repeal of the final operation

• After the sound is ready it has to be saved

→ click on the FILE menu on the top of the left corner, and select EXPORT
TO MP3 command from the appearing menu.

→ We give the name of the completed sound, and the location of the folder
where we want to save. (C:/Desktop/Rubricating/Sounds)

Editing a picture

The edition of pictures is made possible by the use of the PAINT program.

• PAINT program can be found on the rest of the computers, on which Win-
dows operation system is installed.

• Open START menu’select PROGRAMS/ALL PROGRAMS command’ find
ACCESSORIES folder’search for PAINT program and open PAINT by click-
ing on it.

• Buttons can be found on the left side of the program, with which we can
draw in different ways, we can cut out, color a picture, resize it by using the
PICTURE/IMAGE menu on the upper line of menus, and in addition we can
also rotate pictures.

Renaming a picture

• Click on the picture, which is desired to be renamed, by the right button and
choose the command of rename.

• At the name of the picture a word box appears, where we type the desired
name, press ENTER, in this way the name changes.

Changing pictures and sounds

• Pictures are stored in the adequate folder, the pictures are renamed and we
are assured that the format of the picture is JPEG.
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• Sounds are also stored the adequate folder, after renaming and after being
assured that the format of them is MP3.

• Open the folder which contains the pictures.

• From the top-line-menu select EDIT menu and click on it. From the appear-
ing menu click on SELECT ALL command.

• Click on one of the selected pictures by using the right button of the mouse,
then select COPY in the occurring menu.

• WE open the folder called: RUBRICATING/FŐFOGALOM ALÁ REN-
DEZÉS, DATA folder can be found here.

• Click on DATA folder with the right mouse button, and from the menu choose
the INSERT command.

• At this point a question appears → Files with this name have already existed,
overwrite (change them)? → this time we choose YES TO ALL command
and the pictures get into the program.

• In case of sounds we use the same process. (Opening Sounds folder → edit
menu → select all → right click → copy command → opening rubricating
folder → right click on the DATA folder → insert → YES TO ALL button)

Creating word cards

The creation of word cards with the use of OP MAAT LOADER program:

• Instead of pictures we can also take word cards into the program, in this way
we can get help to improve reading.

• The program can be found in the OP MAAT LOADER folder copied to the
desktop, where we open the program by clicking on the icon which has the
same name as the program.

• At the center of the appearing program window the CREATE CARD button
can be found, by clicking on it a new window turns up where we can create
word cards.

• We can type in the desired word to the word box which is under the blue
rectangle (the more letters are typed in the less the size of the letters will be)

• Under it the PRINT TEXT button can be found, if we click on it the typed-in
word appears on the blue word card.

• We have to save it with the appropriate name: → Click on the SAVE AS
button under the blue rectangle and give the name of the picture and the
location where we want to save.

• To place it into the program the instructions written above has to be followed.
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5. Summary

This international version was created for the Tailor Made project initiated by
Comenius. Wherever it is possible the format is independent from the text, in other
words it can be adopted to any of languages in any countries. The uniqueness of this
application is the following. While the structure of the program is kept it is easily
possible to change the content of it according to the demands and requirements.

Our most important object was that the possibilities, which are provided by the
software, should meet the requirements of the target group. The experience shows
that other groups can also use the program efficiently not just those for whom the
program was originally created.

It was not a difficult task for the participating schools to create a perfectly
consistent and complete program from educational point of view, which can also
be used for daily educational work. Besides we think it is very important that the
program has to function as a wonderful entertainment and also as a teaching aid
both for the students and for the teachers as well. The program can be applied
according to the requirements of the students.

We can put it down for success that we got richer with a new method. A method
which helps in preparing the arrangement of the theme/material which is adjustable
to children. We could get to know each other’s everyday life, and exchange each
other’s experience. The foreign-language knowledge and knowledge of informatics
of the colleagues, who participate in the project, have improved significantly. These
improvements promote the everyday use of information-technological applications
in education.

The international co-operation provided insight to other nations’ education in
connection with children demanding special education. We could get to know
how equipped are the institutions, concentrating on the quality of teaching and
educational work we could also get acquainted to the information-communication
technological application use.

During our work we discovered that Children used the created program easily
and gladly. All the institutions presented the program during their own postgradu-
ate courses. As after finishing the program there was no survey which would follow
the further life of the program I can report only about observations in connection
with our institution. The collaborating pedagogue colleagues participated in the fa-
miliarization with interest. They acquired the use and improvement of the program
easily. They were experimenting with the alteration of the program with individ-
ual themes. All the colleagues use with everyday regularity the adopted version
for improving individual abilities and skills and for class of logopedy. Currently we
are planning to use it in the differentiated work of lessons.
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