On \boldsymbol{h}-perfect numbers

Heiko Harborth

Diskrete Mathematik, Technische Universität Braunschweig
38023 Braunschweig, Germany
h.harborth@tu-bs.de

Abstract

Let $\sigma(x)$ denote the sum of the divisors of x. The diophantine equation $\sigma(x)+\sigma(y)=2(x+y)$ equalizes the abundance and deficiency of x and y. For $x=n$ and $y=h n$ the solutions n are called h-perfect since the classical perfect numbers occur as solutions for $h=1$. Some results on h-perfect numbers are determined.

Keywords: perfect numbers, amicable numbers
MSC: 11A25

1. Introduction

Let $\sigma(n)$ denote the sum of the divisors of n, that is,

$$
\sigma(n)=\prod_{i=1}^{r} \frac{p_{i}^{\alpha_{i}+1}-1}{p_{i}-1} \quad \text { for } \quad n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}} .
$$

Since the classical antiquity there exist two famous problems for $\sigma(n)$.
At first it is asked for perfect numbers n fulfilling

$$
\sigma(n)=2 n
$$

All even perfect numbers are of the form $n=\left(2^{p}-1\right) 2^{p-1}$ where p is a prime number and where $2^{p}-1$ is a so-called Mersenne prime number, too. Nearly 50 such prime numbers are known. The existence of odd perfect numbers is still unknown.

Secondly, it is asked for amicable number pairs x, y such that

$$
\sigma(x)-x=y \quad \text { and } \quad \sigma(y)-y=x
$$

Several thousand pairs are known. It remains unknown whether there are infinitely many pairs.

Nonperfect numbers n are called abundant if $\sigma(n)>2 n$ and called deficient if $\sigma(n)<2 n$. Then it may be asked for perfect number pairs x, y fulfilling the diophantine equation

$$
\begin{equation*}
\sigma(x)+\sigma(y)=2(x+y) \tag{1.1}
\end{equation*}
$$

that is, x and y equalize abundance and deficiency.
There exist many solutions x, y of (1.1). For fixed d let X and Y be the sets of solutions x and y of $\sigma(x)=2 x+d$ and $\sigma(y)=2 y-d$, respectively. The sets X and Y are finite (see [1], p. 169). Then all pairs x, y with $x \in X$ and $y \in Y$ are solutions of (1.1).

It may be remarked that perfect and amicable numbers are special cases of (1.1): Perfect numbers for $x=y$ and amicable numbers for $\sigma(x)=\sigma(y)$.

Here it is proposed to consider the special class of solutions of (1.1) when y is a multiple of x, that is,

$$
\begin{equation*}
\sigma(n)+\sigma(h n)=2(n+h n)=2 n(h+1) . \tag{1.2}
\end{equation*}
$$

If $h=1$ then n is a perfect number. Therefore solutions n of (1.2) may be called h-perfect numbers. Some results on h-perfect numbers are determined in the following.

2. Powers of two

For $h=2^{t}$ all h-perfect numbers are dependent on a sequence of certain prime numbers being similar to Mersenne prime numbers.

Theorem 2.1. A number n is 2^{t}-perfect, $t \geq 1$, if and only if holds $n=2^{\alpha}\left(\left(2^{t}+1\right) 2^{\alpha}-1\right)$ where $\left(2^{t}+1\right) 2^{\alpha}-1$ is a prime number.

Proof. Suppose that n is 2^{t}-perfect, $t \geq 1$.
If $(n, 2)=1$ then equation (1.2) implies

$$
\sigma(n)+\sigma\left(n 2^{t}\right)=\sigma(n)\left(1+2^{t+1}-1\right)=\sigma(n) 2^{t+1}=2 n\left(1+2^{t}\right)
$$

Since the left term of (1.2) is divisible by 2^{t+1} whereas the right term of (1.2) is divisible by 2 only, odd 2^{t}-perfect numbers do not exist.

If $n=s 2^{\alpha}, \alpha \geq 1,(s, 2)=1$ then equation (1.2) yields

$$
\sigma\left(s 2^{\alpha}\right)+\sigma\left(s 2^{t+\alpha}\right)=2\left(s 2^{\alpha}+s 2^{t+\alpha}\right)
$$

This is equivalent to

$$
\begin{equation*}
\sigma(s)\left(\left(2^{t}+1\right) 2^{\alpha}-1\right)=\left(2^{t}+1\right) 2^{\alpha} s \quad \text { with } \quad s=v\left(\left(2^{t}+1\right) 2^{\alpha}-1\right), v \geq 1 \tag{2.1}
\end{equation*}
$$

since $\left(\left(2^{t}+1\right) 2^{\alpha}-1,\left(2^{t}+1\right) 2^{\alpha}\right)=1$.

If $v>1$ then equation (2.1) determines

$$
v\left(\left(2^{t}+1\right) 2^{\alpha}-1\right)+v+1 \leq \sigma\left(v\left(\left(2^{t}+1\right) 2^{\alpha}-1\right)\right)=v\left(2^{t}+1\right) 2^{\alpha}
$$

a contradiction.
If $v=1$ and if $s=\left(2^{t}+1\right) 2^{\alpha}-1$ is a composite number then equation (2.1) yields

$$
\left(2^{t}+1\right) 2^{\alpha}<\sigma\left(\left(2^{t}+1\right) 2^{\alpha}-1\right)=\left(2^{t}+1\right) 2^{\alpha},
$$

again a contradiction.
If $v=1$ and if $s=\left(2^{t}+1\right) 2^{\alpha}-1$ is a prime number then equations (2.1) and (1.2) are fulfilled and $n=s 2^{\alpha}$ is 2^{t}-perfect.

In [2] the first 16 and 12 prime numbers $p=\left(2^{t}+1\right) 2^{\alpha}-1$ are listed for $t=1$ and $t=2$, respectively. Thus $10,44,184,752,12224,49024, \ldots$ are the first 2 -perfect numbers. The question for odd 2^{t}-perfect numbers, $t \geq 1$, is completely answered by nonexistence whereas it is still open in the classical case of perfect numbers.

3. Nonexistence

For some classes of values of h it can be proved that h-perfect numbers do not exist.

Theorem 3.1. For $h=c 2^{t},(c, 2)=1, c \geq 3$, there are no even h-perfect numbers if $c+2<2^{t+2}$ and there are no h-perfect numbers if $c+2<2^{t+1}$.

Proof. For even n let $n=r 2^{\alpha}, \alpha \geq 1,(r, 2)=1$. Now suppose that n is $c 2^{t}$-perfect for $c+2<2^{t+2}$. Equation (1.2) implies

$$
\left(2^{\alpha+1}-1\right) \sigma(r)+\left(2^{\alpha+t+1}-1\right) \sigma(c r)=r 2^{\alpha+1}\left(c 2^{t}+1\right)
$$

Using $\sigma(c r) \geq c r+\sigma(r)$ it follows

$$
\sigma(r)\left(2^{\alpha+1}-1+2^{\alpha+t+1}-1\right) \leq\left(2^{\alpha+1}+c\right) r
$$

Then $\sigma(r) \geq r$ together with $\alpha \geq 1$ determines

$$
2^{t+1} \leq 2^{\alpha+t+1} \leq c+2
$$

a contradiction.
For odd n suppose that n is $c 2^{t}$-perfect for $c+2<2^{t+1}$. Equation (1.2) implies

$$
\sigma(n)+\left(2^{t+1}-1\right) \sigma(c n)=2 n\left(1+c 2^{t}\right)
$$

With $\sigma(c n) \geq c n+\sigma(n)$ it follows

$$
2^{t+1} \sigma(n) \leq(c+2) n
$$

and with $\sigma(n) \geq n$ the contradiction

$$
2^{t+1} \leq c+2
$$

is obtained.

For $h<100$ by Theorem 3.1 no h-perfect numbers occur if $h=12,20,24,40$, $48,56,72,80,88$, or 92 .

The following theorem presents another example of partial nonexistence.
Theorem 3.2. There is no even 3^{t}-perfect number, $t \geq 1$.
Proof. Suppose that $n=r 2^{\alpha}$ is an h-perfect number for $h=3^{t}, t \geq 1, \alpha \geq 1$, $(r, 2)=1$. Equation (1.2) yields

$$
\begin{equation*}
\sigma(r)\left(2^{\alpha+1}-1\right)+\sigma\left(r 3^{t}\right)\left(2^{\alpha+1}-1\right)=r 2^{\alpha+1}\left(1+3^{t}\right) \tag{3.1}
\end{equation*}
$$

Case I: $(r, 3)=1$. It follows

$$
\sigma(r)\left(2^{\alpha+1}-1\right)\left(1+\left(3^{t+1}-1\right) / 2\right)=r 2^{\alpha+1}\left(1+3^{t}\right)
$$

and equivalently

$$
\sigma(r)\left(2^{\alpha+1}-1\right)\left(1+3^{t+1}\right)=r 2^{\alpha+2}\left(1+3^{t}\right)
$$

With $\sigma(r) \geq r$ the inequality

$$
\left(2^{\alpha+1}-1\right)\left(1+3^{t+1}\right) \leq 2^{\alpha+2}\left(1+3^{t}\right)
$$

is obtained being equivalent to

$$
\left(3^{t}-1\right) 2^{\alpha+1} \leq 1+3^{t+1}
$$

This is a contradiction for $\alpha, t \geq 1$ excluded $\alpha=t=1$. Then, however, the left term of (3.1) is divisible by 3 and, in the contrary, 3 does not divide the right term of (3.1) due to $(r, 3)=1$.

Case II: $r=s 3^{\beta}, \beta \geq 1,(s, 3)=1$, and $(s, 2)=1$ since $(r, 2)=1$. By equation (3.1) it follows

$$
\sigma(s)\left(2^{\alpha+1}-1\right)\left(3^{\beta+1}+3^{\beta+t+1}-2\right)=s 2^{\alpha+2} 3^{\beta}\left(1+3^{t}\right)
$$

and with $\sigma(s) \geq s$

$$
2^{\alpha+1} 3^{\beta+1}+2^{\alpha+1} 3^{t+\beta+1}-2^{\alpha+2}-3^{\beta+1}-3^{t+\beta+1}+2 \leq 2^{\alpha+2} 3^{t+\beta}+2^{\alpha+2} 3^{\beta}
$$

This inequality is equivalent to

$$
\left(3^{\beta}\left(1+3^{t}\right)-2\right)\left(2^{\alpha+1}-3\right) \leq 4
$$

yielding a contradiction for $\alpha, \beta, t \geq 1$.

4. Even perfect-perfect numbers

For some values of h there exist only a small number of h-perfect numbers.
Theorem 4.1. For $h=6$ only 13 is h-perfect and for any other even perfect number h there are no h-perfect numbers.
Proof. Let $h=\left(2^{p}-1\right) 2^{p-1}$ be an even perfect number, that is, p and $2^{p}-1$ both are prime numbers. Suppose that n is an h-perfect number.

For even n, that is, $n=r 2^{\alpha}, \alpha \geq 1,(r, 2)=1$, Theorem 3.1 implies the condition $2^{p}+1 \geq 2^{p+1}$ being impossible.

For odd n two cases are distinguished.
Case I: $n=r\left(2^{p}-1\right)^{\alpha}=r q^{\alpha}, \alpha \geq 1,\left(r, 2^{p}-1\right)=(r, q)=1$. By equation (1.2),

$$
\sigma\left(r q^{\alpha}\right)+\sigma\left(r 2^{p-1} q^{\alpha+1}\right)=2 r q^{\alpha}\left(1+q 2^{p-1}\right)
$$

and hence

$$
\sigma(r)\left(q^{\alpha+1}-1+\left(2^{p}-1\right)\left(q^{\alpha+2}-1\right)\right)=r(q-1)\left(2 q^{\alpha}+2^{p} q^{\alpha+1}\right)
$$

With $\sigma(r) \geq r$ and $2^{p}-1=q$ this yields

$$
q^{\alpha+1}-1+q^{\alpha+3}-q \leq 2 q^{\alpha+1}+q^{\alpha+3}+q^{\alpha+2}-2 q^{\alpha}-q^{\alpha+2}-q^{\alpha+1}
$$

and thus the contradiction

$$
2 q^{\alpha} \leq q+1
$$

Case II: $\left(n, 2^{p}-1\right)=(n, q)=1$. Equation (1.2) yields

$$
\begin{gathered}
\sigma(n)+\sigma\left(n q 2^{p-1}\right)=2 n\left(1+q 2^{p-1}\right), \\
\sigma(n)+\sigma(n)\left(2^{p}-1\right)(q+1)=n\left(2+q 2^{p}\right),
\end{gathered}
$$

and thus

$$
\sigma(n)(1+q(q+1))=n(2+q(q+1))
$$

Since $(1+q(q+1), 2+q(q+1))=1$ it is necessary that

$$
\begin{equation*}
\sigma(n)=v(2+q(q+1)) \quad \text { with } \quad n=v(1+q(q+1)), v \geq 1 . \tag{4.1}
\end{equation*}
$$

If $v>1$ in equation (4.1) then

$$
v(1+q(q+1))+v+1 \leq \sigma(n)=v(2+q(q+1))
$$

is a contradiction.
If $v=1$ in equation (4.1) and if $1+q(q+1)$ is a composite number then

$$
2+q(q+1)<\sigma(n)=2+q(q+1)
$$

is a contradiction.
It remains that $v=1$ in equation (4.1) and $1+q(q+1)$ is a prime number. This, however, is impossible for odd prime numbers p since 3 divides $1+q(q+1)=$ $1+\left(2^{p}-1\right) 2^{p}$ due to $2^{p} \equiv-1(\bmod 3)$. Thus $p=2$ determines $1+q(q+1)=13$ as the unique solution of equations (4.1) and (1.2) for $h=\left(2^{2}-1\right) 2^{2-1}=6$.

5. Small values of h

For $h \leq 16$ the discussion is completed for $h=2,4,6,8,12$, and 16. For $h=3$, 9 , and 10 even h-perfect numbers do not exist. So far no h-perfect numbers are known for $h=3,9,10$, and 13 . The numbers $n=14$ and $n=7030$ are 5 -perfect, $n=135$ and $n=1365$ are 7-perfect, $n=182$ is 11 -perfect, $n=5$ and $n=118$ are 14 -perfect, and $n=455$ is 15 -perfect.

Finally, there are two corollaries for the Fibonacci number $F_{7}=13$ as consequences of Theorems 3.1 and 4.1.

Corollary 5.1. Only 13 is an h-perfect number for any even perfect number h.
Corollary 5.2. Only 13 is a $3 \cdot 2^{t}$-perfect number for any $t \geq 1$.

References

[1] Sierpinski, W., Elementary Theory of Numbers. Warszawa 1964.
[2] Online Ecyclopedia of Integer Sequences (OEIS), A007505 and A050522.

