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Abstract

The Jacobsthal recurrence relation is extended to higher order recurrence
relations and the basic list of identities provided by A. F. Horadam [10] is
expanded and extended to several identities for some of the higher order cases.
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1. Introduction

Horadam, in [10], exhibited a plethora of identities for the second order Jacobsthal
and Jacobsthal-Lucas numbers. He then went on to explore their relationships and
those of a variety of associated and representative sequences. The aim here is to
present some additional identities and analogous relationships for numbers arising
from some higher order Jacobsthal recurrence relations.

Obtaining properties by extending the Jacobsthal sequence to the third and
higher orders depends on the choice of initial conditions. For example, this was
done in [3] by taking all of the conditions to be zero, except the last, which was
assigned the value 1. The procedure here will be to extend by using other initial
values.
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2. The second order Jacobsthal case

The second-order recurrence relations for the Jacobsthal numbers,Jn, and for the
Jacobsthal-Lucas numbers, jn, and a few of their relationships are given here for
reference. Namely,
Recurrence relations

Jn+2 = Jn+1 + 2Jn, J0 = 0, J1 = 1, n ≥ 0

jn+2 = jn+1 + 2jn, j0 = 2, j1 = 1, n ≥ 0

Table of values

n 0 1 2 3 4 5 6 7 8 9 10 . . .
Jn 0 1 1 3 5 11 21 43 85 171 341 . . .
jn 2 1 5 7 17 31 65 127 257 511 1025 . . .

Binet forms
Jn =

2n − (−1)n
3

and jn = 2n + (−1)n

Simson/Cassini/Catalan identities
∣∣∣∣
Jn+1 Jn
Jn Jn−1

∣∣∣∣ = (−1)n2n−1,
∣∣∣∣
jn+1 jn
jn jn−1

∣∣∣∣ = 9(−1)n−12n−1

Ordinary generating functions

∞∑

k=0

Jkx
k =

x

1− x− 2x2

∞∑

k=0

jkx
k =

2− x
1− x− 2x2

Exponential generating functions

∞∑

k=0

Jk
xk

k!
=
e2x − e−x

3

∞∑

k=0

jk
xk

k!
= e2x + e−x

Although these are not given in [10] the exponential generating functions are
easily obtained using the Maclaurin series for the exponential function and can be
useful in establishing identities. For example, using the method provided in [2, 12,
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p. 232ff] the following can be obtained. Let A = ex and B =
eαx − eβx
α− β where

α = 2 and β = −1. Then

B =
1

α− β

[
(α− β)x

1!
+

(α2 − β2)x2

2!
+ · · ·

]
=
∞∑

k=0

Jk
xk

k!
.

Using the well known double sum identity
∞∑

n=0

∞∑

k=0

F (k, n) =
∞∑

n=0

n∑

k=0

F (k, n− k)

found in [2, 15, p. 56] AB can be written as

AB =

∞∑

n=0

xn

n!

∞∑

k=0

Jk
xk

k!
=

∞∑

n=0

∞∑

k=0

Jk
xn+k

n!k!
=

∞∑

n=0

n∑

k=0

Jk
x(n−k)+k

(n− k)!k!

=

∞∑

n=0

(
n∑

k=0

(
n

k

)
Jk

)
xn

n!
.

In addition AB can also be written as

AB =
e(α+1)x − e(β+1)x

α− β =
e(2+1)x − e(−1+1)x

2− (−1) =
e3x − 1

3
=

1

3
· 0 +

∞∑

n=1

3n−1
xn

n!

and so it follows that
n∑

k=0

(
n

k

)
Jk = 3n−1.

Similarly with B =
eαx − eβx
α− β and A = e−3x it follows that

n∑

k=0

(
n

k

)
(−2)n−1Jk = (−3)n−1,

and if B = eαx+βx then
n∑

k=0

(
n

k

)
Jkjn−k = 2nJn.

Other summation identities can be obtained in a similar fashion.

3. The third order Jacobsthal case

First we consider extending the Jacobsthal and Jacobsthal-Lucas numbers to the
third order, denoted as J (3)

n and j(3)n respectively, with the following initial condi-
tions:
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Recurrence relations

J
(3)
n+3 = J

(3)
n+2 + J

(3)
n+1 + 2J (3)

n , J
(3)
0 = 0, J

(3)
1 = 1, J

(3)
2 = 1 n ≥ 0.

j
(3)
n+3 = j

(3)
n+2 + j

(3)
n+1 + 2j(3)n , j

(3)
0 = 2, j

(3)
1 = 1, j

(3)
2 = 5 n ≥ 0.

Table of values

n 0 1 2 3 4 5 6 7 8 9 10 . . .
J
(3)
n 0 1 1 2 5 9 18 37 73 146 293 . . .
j
(3)
n 2 1 5 10 17 37 74 145 293 586 1169 . . .

Note that we extend to 3rd order using initial conditions {0, 1, 1} in the spirit of
extending the Fibonacci initial conditions {0, 1} to Tribonacci {0, 1, 1} and those
initial conditions for the Jacobsthal-Lucas numbers in a natural way from the
second order case.
Binet forms

Using standard techniques for solving recurrence relations, the auxiliary equa-
tion, and its roots are given by

x3 − x2 − x− 2 = 0; x = 2, and x =
−1± i

√
3

2
.

Note that the latter two are the complex conjugate cube roots of unity. Call them
ω1 and ω2, respectively. Thus the Binet formulas can be written as

J (3)
n =

2

7
2n − 3 + 2i

√
3

21
ωn1 −

3− 2i
√
3

21
ωn2 ,

and

j(3)n =
8

7
2n +

3 + 2i
√
3

7
ωn1 +

3− 2i
√
3

7
ωn2 . (3.1)

Simson’s identities
∣∣∣∣∣∣∣

J
(3)
n+2 J

(3)
n+1 J

(3)
n

J
(3)
n+1 J

(3)
n J

(3)
n−1

J
(3)
n J

(3)
n−1 J

(3)
n−2

∣∣∣∣∣∣∣
= −2n−1,

∣∣∣∣∣∣∣

j
(3)
n+2 j

(3)
n+1 j

(3)
n

j
(3)
n+1 j

(3)
n j

(3)
n−1

j
(3)
n j

(3)
n−1 j

(3)
n−2

∣∣∣∣∣∣∣
= −9 · 2n+1. (3.2)

The identities above can be proved using mathematical induction. As an ex-
ample an inductive proof for the Jn case is provided: For n = 2, 3, 4 and 5, the
determinants are routinely computed to be −2,−4,−8,−16, respectively. So we
surmise the general case to be as given in (3.2). Assuming the nth case is true
and expanding that determinant by the 3rd column and expanding the (n + 1)th

determinant by the 1st column yields the following:
∣∣∣∣∣∣∣

J
(3)
n+3 J

(3)
n+2 J

(3)
n+1

J
(3)
n+2 J

(3)
n+1 J

(3)
n

J
(3)
n+1 J

(3)
n J

(3)
n−1

∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣

J
(3)
n+2 J

(3)
n+1 J

(3)
n

J
(3)
n+1 J

(3)
n J

(3)
n−1

J
(3)
n J

(3)
n−1 J

(3)
n−2

∣∣∣∣∣∣∣
+ C,
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where

C = (J
(3)
n+2 + J

(3)
n+1)

∣∣∣∣∣
J
(3)
n+1 J

(3)
n

J
(3)
n J

(3)
n−1

∣∣∣∣∣− (J
(3)
n+1 + J (3)

n )

∣∣∣∣∣
J
(3)
n+2 J

(3)
n+1

J
(3)
n J

(3)
n−1

∣∣∣∣∣

+ (J (3)
n + J

(3)
n−1)

∣∣∣∣∣
J
(3)
n+2 J

(3)
n+1

J
(3)
n+1 J

(3)
n

∣∣∣∣∣ .

By expanding C it is easy to see that the expression is 0 and so the conjecture is
valid.
Ordinary generating functions

The ordinary generating functions are obtained by standard methods [12, p
237ff] as briefly illustrated here.

Let g(x) =
∑∞
k=0 Jkx

k and h(x) =
∑∞
k=0 jkx

k. Compute (1−x−x2−2x3)g(x)
and (1 − x − x2 − 2x3)h(x) and apply the initial conditions for the third order
Jacobsthal and Jacobsthal-Lucas numbers, respectively, to obtain the following
generating functions.

∞∑

k=0

J
(3)
k xk =

x

1− x− x2 − 2x3
.

∞∑

k=0

jkx
k =

2− x+ 2x2

1− x− x2 − 2x3
.

Exponential generating functions
The exponential generating functions can be obtained from the Maclaurin series

for the exponential function as follows. Note that

1

21

(
6e2x − (3 + 2i

√
3)eω1x − (3 + 2i

√
3)eω2x

)
=

∞∑

k=0

1

21

(
6(2k)− (3 + 2i

√
3)ωk1 − (3 + 2i

√
3)ωk2

) xk
k!

=

∞∑

k=0

Jk
xk

k!
.

Also, since

(3 + 2i
√
3)eω1x + (3 + 2i

√
3)eω2x = e−

1
2x
(
(3 + 2i

√
3)e

√
3

2 ix + (3 + 2i
√
3)e

√
3

2 ix
)

= e−
1
2x

(
6 cos

√
3x

2
+ 4
√
3 sin

√
3x

2

)
,

the exponential generating function for the 3rd order Jacobsthal numbers becomes

∞∑

k=0

J
(3)
k

xk

k!
=

1

21

(
6e2x + e−

1
2x

(
6 cos

√
3x

2
+ 4
√
3 sin

√
3x

2

))
.
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Similarly the exponential generating function for the 3rd order Jacobsthal-Lucas
numbers can be written as

∞∑

k=0

j
(3)
k

xk

k!
=

1

7

(
8e2x + e−

1
2x

(
6 cos

√
3x

2
+ 4
√
3 sin

√
3x

2

))
.

4. Additional identities for third order Jacobsthal
numbers

Summation formulas

n∑

k=0

J
(3)
k =

{
J
(3)
n+1 if n 6≡ 0 mod 3

J
(3)
n+1 − 1 if n ≡ 0 mod 3

,

n∑

k=0

j
(3)
k =

{
j
(3)
n+1 − 2 if n 6≡ 0 mod 3

j
(3)
n+1 + 1 if n ≡ 0 mod 3

.

Miscellaneous identities

3J (3)
n + j(3)n = 2n+1. (4.1)

j(3)n − 3J (3)
n = 2j

(3)
n−3. (4.2)

j
(3)
n+1 + j(3)n = 3J

(3)
n+1.

(
j(3)n

)2
− 9

(
J (3)
n

)2
= 2n+1j

(3)
n−3.





j
(3)
3n−1 = J

(3)
3n+1

j
(3)
3n = J

(3)
3n+2 + 1

j
(3)
3n+1 = J

(3)
3n+3 − 1

.





j
(3)
3n−1 − 4J

(3)
3n−1 = 1

j
(3)
3n − 4J

(3)
3n = 2

j
(3)
3n+1 − 4J

(3)
3n+1 = −3

.

j(3)n − 4j
(3)
n−2 =

{
−3 if n is even
6 if n is odd

.

Squaring both sides of (4.1) and (4.2) and subtracting the results, it follows that

J (3)
n j(3)n =

1

3

(
4n −

(
j
(3)
n−3

)2)
.

Note that some observations on generating functions for the Jacobsthal poly-
nomials can be found in [7, 8]. Papers on generating functions for a variety of
sequential numbers are abundant. See, for example [1, 4, 5, 6, 9, 13, 14, 16].
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As an illustration of how ordinary generating functions can be used to derive
identities, we use the technique of Gould, see [4] and used for Fibonacci identities
in [2]. Making use of the properties of α and β for Fibonacci numbers as needed,
it follows that

∞∑

k=0

J
(3)
k Fkx

k =
∞∑

k=0

J
(3)
k

αk − βk
α− β xk

=
αx

1− αx− α2x2 − 2α3x3
+

βx

1− βx− β2x2 − 2β3x3

=
x− x3 − 2x4

1− x− 4x2 − 5x3 + 4x5 − 4x6
.

Similarly if we write (3.1) as j(3)n =
8

7
2n+

A

7
ωn1 +

B

7
ωn2 and make use of the fact that

Aω1 =
−9 + i

√
3

2
, Bω2 =

−9− i
√
3

2
, ω2

1 = ω2, and ω2
2 = ω1, ω1ω2 = ω3

1 = ω3
2 = 1

then the following generating function is obtained:

∞∑

k=0

J
(3)
k j

(3)
k =

1

7

∞∑

k=0

J
(3)
k

(
8(2x)k +A(ω1x)

k +B(ω2x)
k
)

=
13x+ 20x2 + 47x3 − 16x4 + 8x5 − 40x6 − 32x7

7(1− 2x− 4x2 − 16x3)(1 + x+ 2x2 − 5x3 − x4 − 2x5 + 4x6)
.

5. Higher order Jacobsthal numbers

As seen in [3] one way to generalize the Jacobsthal recursion is as follows.

J
(k)
n+k =

k−1∑

j=1

J
(k)
n+k−j + 2J (k)

n

with n ≥ 0 and initial conditions J (k)
i = 0, for i = 0, 1, . . . k − 2 and J (k)

k−1 = 1, has
characteristic equation (x−2)(xk−1+xk−2+ · · ·+x2+x+1) = 0 with eigenvalues
2 and ωj = e

2πim
k for j = 1, 2, . . . , k − 1, which yields the Binet form:

J (k)
n =

1
∏k−1
j=1 (2− ωj)


2n −

k−1∑

j=1

k−1∏

m 6=j

2− ωm
ωj − ωm

ωnj


 .

In this paper we generalize the Jacobsthal recursion as

J
(k)
n+k =

k−1∑

j=1

J
(k)
n+k−j + 2J (k)

n ,

Some identities for Jacobsthal and Jacobsthal-Lucas numbers . . . 33



with n ≥ 0 and initial conditions J (k)
0 = 0 and J (k)

i = 1 for i = 1, . . . k− 1. For the
kth order Jacobsthal -Lucas numbers j(k)n we use the same recursion with initial
conditions j(k)i = j

(k−1)
i for i = 0 . . . k − 1. With the change of initial conditions a

similar compact form for kth order Binet formulae appears to be unobtainable as
indicated in the examples below.
Ordinary generating function

A formula for the ordinary generating function for all generalized Fibonacci
numbers has been addressed in other papers. For example, that given in [11] for
the recurrence

an = bk−1an−1 + bk−2an−2 + · · ·+ b0an−k

with arbitrary constant coefficients, bj , and with arbitrary initial conditions is

g(x) =
a0 +

∑k−1
i=1

(
ai −

∑i
j=0 bk−i+jaj

)
xi

1−∑k
i=1 bk−ix

i
. (5.1)

Here we exhibit (5.1) for the kth order Jacobsthal case (which could also be obtained
by using the same procedure used in deriving the generating function for the 3rd

order case) namely

∞∑

i=0

J
(k)
i xi =

J
(k)
0 + (J

(k)
1 − J (k)

0 )x+ · · ·+ (J
(k)
k−1 − J

(k)
k−2 − · · · 2J

(k)
0 )xk−1

1− x− xx − · · · − 2xk
.

Examples
(1) The Fourth Order Jacobsthal and Jacobsthal–Lucas numbers
Recurrence relations

J
(4)
n+4 = J

(4)
n+3 + J

(4)
n+2 + J

(4)
n+1 + 2J (4)

n ,

where n ≥ 0 and J (4)
0 = 0, J

(4)
1 = J

(4)
2 = J

(4)
3 = 1.

j
(4)
n+4 = j

(4)
n+3 + j

(4)
n+2 + j

(4)
n+1 + 2j(4)n ,

where n ≥ 0 and j(4)0 = 2, j
(4)
1 = 1, j

(4)
2 = 5, j

(4)
3 = 10.

Table of values

n 0 1 2 3 4 5 6 7 8 9 10 . . .
J
(4)
n 0 1 1 1 3 7 13 25 51 103 205 . . .
j
(4)
n 2 1 5 10 20 37 77 154 308 613 1229 . . .

Binet form
The auxiliary equation, and its roots are given by

x4 − x3 − x2 − x− 2 = 0, x1 = 2, x2 = −1, x3 = i, x4 = −i,
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and the Binet formulas can be written as

J (4)
n =

1

8 + i

(
2n − 1

2
(1 + 8i)in +

1

2
(3 + i)(−1)n − 1

2
(4− 7i)(−i)n

)

and

j(4)n =
104(1− 3i)2n − 15(11 + 3i)in − 6(6 + 17i)(−1)n − 15(7 + 9i)(−i)n

4(16− 63i)
.

Rewriting these in terms of the roots of unity, ωj does not suggest a pattern when
compared with the 2nd and 3rd order cases.
Simson’s identity
∣∣∣∣∣∣∣∣∣

J
(4)
n+3 J

(4)
n+2 J

(4)
n+1 J

(4)
n

J
(4)
n+2 J

(4)
n+1 J

(4)
n J

(4)
n−1

J
(4)
n+1 J

(4)
n J

(4)
n−1 J

(4)
n−2

J
(4)
n J

(4)
n−1 J

(4)
n−2 J

(4)
n−3

∣∣∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣∣

j
(4)
n+3 j

(4)
n+2 j

(4)
n+1 j

(4)
n

j
(4)
n+2 j

(4)
n+1 j

(4)
n j

(4)
n−1

j
(4)
n+1 j

(4)
n j

(4)
n−1 j

(4)
n−2

j
(4)
n j

(4)
n−1 j

(4)
n−2 j

(4)
n−3

∣∣∣∣∣∣∣∣∣
= 2n−2 · 35.

Summation formulas

n∑

k=0

J
(4)
k =





J
(4)
n+1 if n ≡ ±1 mod 4

J
(4)
n+1 − 1 if n ≡ 0 mod 4

J
(4)
n+1 + 1 if n ≡ 2 mod 4

,
n∑

k=0

j
(4)
k =

{
j
(4)
n+1 − 2 if n 6≡ 0 mod 4

j
(4)
n+1 + 1 if n ≡ 0 mod 4

.

Miscellaneous fourth order identities

6J (4)
n + j(4)n =





j
(4)
n+1 + 1 if n ≡ 0 mod 4

j
(4)
n+1 + 2 if n ≡ 1 mod 4

j
(4)
n+1 + 1 if n ≡ 2 mod 4

j
(4)
n+1 − 4 if n ≡ 3 mod 4

.

j(4)n − 6J (4)
n =





2 if n ≡ 0 mod 4

−5 if n ≡ 1 mod 4

−1 if n ≡ 2 mod 4

4 if n ≡ 3 mod 4

.

J (4)
n + j(4)n =





J
(4)
n+2 if n ≡ 0 mod 4

J
(4)
n+2 + 2 if n ≡ 1 mod 4

J
(4)
n+2 − 1 if n ≡ 2 mod 4

J
(4)
n+2 − 1 if n ≡ 3 mod 4

.
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In this case the product of the Jacobsthal and Jacobsthal–Lucas functions is some-
what less appealing than in previous cases:

24J (4)
n j(4)n =





(j
(4)
n+1 + 1)2 − 4 if n ≡ 0 mod 4

(j
(4)
n+1 + 2)2 − 25 if n ≡ 1 mod 4

(j
(4)
n+2 + 1)2 − 1 if n ≡ 2 mod 4

(j
(4)
n+2 − 4)2 − 16 if n ≡ 3 mod 4

.

(2) The Fifth Order Jacobsthal and Jacobsthal–Lucas numbers
Recurrence relations

J
(5)
n+5 = J

(4)
n+4 + J

(5)
n+3 + J

(5)
n+2 + J

(5)
n+1 + 2J (5)

n ,

where n ≥ 0 and J (5)
0 = 0, J

(5)
1 = J

(5)
2 = J

(5)
3 = J

(5)
4 = 1.

j
(5)
n+5 = j

(5)
n+4 + j

(5)
n+3 + j

(5)
n+2 + j

(5)
n+1 + 2j(5)n ,

where n ≥ 0 and j(5)0 = 2, j
(5)
1 = 1, j

(5)
2 = 5, j

(5)
3 = 10, j

(5)
4 = 20.

Table of values

n 0 1 2 3 4 5 6 7 8 9 10 . . .
J
(5)
n 0 1 1 1 1 4 9 17 33 65 132 . . .
j
(5)
n 2 1 5 10 20 40 77 157 314 628 1256 . . .

Binet form
The auxiliary equation, and its roots are given by

x5 − x4 − x3 − x2 − x− 2 = 0, x1 = 2, x2 = ω1, x3 = ω2, x4 = ω3, x5 = ω4,

where for m = 1, 2, 3, 4, ωm = exp

(
2πim

5

)
. The Binet formulas can be written as

J (5)
n =

−4
33

2n − 24 + 43ω1 + 37ω2 − 59ω3 − 45ω4

155
ωn1

+
24− 59ω1 + 43ω2 − 45ω3 + 37ω4

155
ωn2 +

24 + 37ω1 − 45ω2 + 43ω3 − 59ω4

155
ωn3

− 24− 45ω1 − 59ω2 + 37ω3 + 43ω4

155
ωn4 ,

and similarly

j(5)n =
42

33
2n +

3(14− 24ω1 − 12ω2 + 25ω3 − 3ω4)

155(ω1 − ω2 − ω3 − ω4)
ωn1

+
3(14 + 25ω1 − 24ω2 − 3ω3 + 12ω4)

155(ω1 − ω2 − ω3 − ω4)
ωn2 +

3(14− 12ω1 − 3ω2 − 24ω3 + 25ω4)

155(ω1 − ω2 − ω3 − ω4)
ωn3

− 3(14− 3ω1 + 25ω2 − 12ω3 − 24ω4)

155(ω1 − ω2 − ω3 − ω4)
ωn4 ,
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Simson’s identity
∣∣∣∣∣∣∣∣∣∣∣

J
(5)
n+4 J

(5)
n+3 J

(5)
n+2 J

(5)
n+1 J

(5)
n

J
(5)
n+3 J

(5)
n+2 J

(5)
n+1 J

(5)
n J

(5)
n−1

J
(5)
n+2 J

(5)
n+1 J

(5)
n J

(5)
n−1 J

(5)
n−2

J
(5)
n+1 J

(5)
n J

(5)
n−1 J

(5)
n−2 J

(5)
n−3

J
(5)
n J

(5)
n−1 J

(5)
n−2 J

(5)
n−3 J

(5)
n−4

∣∣∣∣∣∣∣∣∣∣∣

= 2n−2 · 11.

∣∣∣∣∣∣∣∣∣∣∣

j
(5)
n+4 j

(5)
n+3 j

(5)
n+2 j

(5)
n+1 j

(5)
n

j
(5)
n+3 j

(5)
n+2 j

(5)
n+1 j

(5)
n j

(5)
n−1

j
(5)
n+2 j

(5)
n+1 j

(5)
n j

(5)
n−1 j

(5)
n−2

j
(5)
n+1 j

(5)
n j

(5)
n−1 j

(5)
n−2 j

(5)
n−3

j
(5)
n j

(5)
n−1 j

(5)
n−2 j

(5)
n−3 j

(5)
n−4

∣∣∣∣∣∣∣∣∣∣∣

= 2n−3 · 34 · 19.

Summation formulas

n∑

k=0

J
(5)
k =





J
(5)
n+1 if n ≡ ±1 mod 5

J
(5)
n+1 − 1 if n ≡ 0 mod 5

J
(5)
n+1 + 1 if n ≡ 2 mod 5

J
(5)
n+1 + 2 if n ≡ 3 mod 5

,
n∑

k=0

j
(5)
k =

{
j
(5)
n+1 − 2 if n 6≡ 0 mod 5

j
(5)
n+1 + 1 if n ≡ 0 mod 5

.

Miscellaneous fifth order identities

j(5)n + 6J (5)
n =





2n+1 if n ≡ 0 mod 5

2n+1 + 3 if n ≡ 1 mod 5

2n+1 + 3 if n ≡ 2 mod 5

2n+1 if n ≡ 3 mod 5

2n+1 − 6 if n ≡ 4 mod 5

. (5.2)

j(5)n − 6J (5)
n =





2n−1 − 3(J
(5)
n−3 − 1) if n ≡ 0 mod 5

2n−1 − 3(J
(5)
n−3 + 2) if n ≡ 1 mod 5

2n−1 − 3(J
(5)
n−3 + 2) if n ≡ 2 mod 5

2n−1 − 3J
(5)
n−3 if n ≡ 3 mod 5

2n−1 − 3(J
(5)
n−3 − 3) if n ≡ 4 mod 5

. (5.3)

If we let the right hand side of (5.2) beM and that of (5.3)N , then the following
are noted

j(5)n =
M +N

2
, J (5)
n =

M −N
12

.

j(5)n + J (5)
n =

7M + 5N

12
, j(5)n − J (5)

n =
5M + 7N

12
, J (5)
n j(5)n =

M2 −N2

24
.
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and finally

(j(5)n )2 − 36(J (5)
n )2 =MN and (j(5)n )2 + 36(J (5)

n )2 =
M2 +N2

2
.

6. Concluding comments

The authors believe that most of these results are new but unfortunately, many
of them do not seem to fall into a convenient pattern for generalization to an nth
order case. While investigating the Simson (Cassini/Catalan) identity for higher
order Jacobsthal numbers a general Simson identity for an arbitrary nth order
recursive relation was discovered and proved. This generalized Simson identity
has resulted in a short paper that will be submitted to the Fibonacci Quarterly.
Certainly many more identities could be generated from those obtained here and
by investigating Jacobsthal and Jacobsthal-Lucas polynomials. For example, using
the methods presented in [1, 2, 6, 13, 16] a plethora of identities generated from
ordinary generating functions should be possible; and similarly using [2, 5, 12, 14],
identities obtained from the exponential generating functions should arise. Further
investigations for these and other methods useful in discovering identities for the
higher order Jacobsthal and Jacobsthal-Lucas numbers will be addressed in a future
paper.

Acknowledgments. The authors would like to thank the anonymous referee for
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