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Abstract

A typical research field in number theory is determining the solutions
of Diophantine equations. One of the earliest topic amongst these are the
topics of Thue equations and inequalities. These equations are bivariate
homogenous forms, with integer coeffictients.

The aim of the article is to create a parallel program, that can solve
arbitrary Thue equations in finite time, and also gives good running times
with the classical families. Naturally with the computational packages such
as Maple, Magma or Kant a Thue equation can be solved, but in practice they
can’t handle problems given with relatively large coefficients. The parallel
version of the algorithm provides an alternative to this problem.

Another application of the parallel program lies in determining the solu-
tions of simultaneos Pellian equations. According to the work of L. Szalay
the solutions of the system of equations can be traced back to the solutions
of Thue equations, which can be found with the method given.

Keywords: Thue equations, parallel algorithm, simultaneous Pellian equations

MSC: 11Y40; 11D75

∗This research was carried out as part of the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project
with support by the European Union, co-financed by the European Social Fund.

Annales Mathematicae et Informaticae
40 (2012) pp. 125–134
http://ami.ektf.hu

125



1. Basic terms

1.1. Thue equations
Let F (x, y) be a bivariate, homogenous, over Q[x, y] irreducible polinomial with
integer coefficients of at least third degree. Explicitly:

F (x, y) = anx
n + an−1x(n−1)y + . . .+ a0y

n ∈ Z[x, y]
n ≥ 3 and m ∈ Z,m 6= 0.

Then the
F (x, y) = m (1.1)

equation is called Thue equation, of which’s x, y ∈ Z are sought. Thue [10] proved
that, (1.1) has only finitely many solutions for all m. Later, Baker [1] showed, that
there exists an effectively computable constant based only onm and the coefficients
of F which serves as an upper bound for the solutions.

Thue equations can be classified into parametric families. The first parametric
family was introduced by Thue himself. In 1990 Thomas was the first to investigate
families of fixed degrees, specifically a family of degree three. Furthermore several
authors investigated certain families E.g. A. Pethő, Gaál, Lettl, Heuberger, Togbé
and Ziegler.

There are a number of algorithms which provide the solutions of Thue equations.
Unfortunately Baker’s bound is too large, and does not make it possible to handle
the problem by simple enumeration. For a similar problem Baker and Davenport
created a method to reduce this bound drastically. A. Pethő and Schulenberg used
a method of continued fraction reduction, and later the LLL-algorithm.

Among these algorithms a prominent one is the method described by A. Pethő,
which provides the “small solutions” of such equations. An advantage of this al-
gorithm is that it can be relatively easily implemented (it is based on the con-
tinued fraction algorithm). Furthermore it can benefit from many parallelization
techniques. The most important definitions and theorems like the approximation
theorems and their uses regarding the solutions of Thue equations are part of the
article.

A method to find all the solutions of (1.1) for m = 1 and arbitrary n also exists.
Finally Bilu and Hanrot [3] gave a much more efficient continued fraction method
to reduce the bound, and they were able to solve equations up to the degree of
1000.

1.2. Simultaneous Pell equations
Simultaneous Pell equations are defined as follows:

a1x
2 + b1y

2 = c1, (1.2)
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a2x
2 + b2z

2 = c2, (1.3)

where the x, y and z are nonnegative integers, and the coefficients satisfy the
following conditions:

a1b1 < 0, a2b2 < 0, c1c2 6= 0, a1c2 − a2c1 6= 0.

There is a method due to L. Szalay [9] with which one can trace back the solutions
of such equations to the solving finitely many Thue equations.

1.3. Balancing numbers
Definition 1.1. An n positive integer is called a balancing number, if

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

holds, for a suitable positive integer r.

Liptai published some results [5, 6] on special kinds of balancing numbers.
For example a balancing number is called a Fibonacci balancing number if it is
a Fibonacci number as well. He also proved that such balancing numbers are
solutions of the equation

x2 − 5y2 = ±4.
If we are to find such common numbers in the Fibonacci sequence and the balancing
numbers we have to provide an additional equation regarding the current balancing
number, and solve the system. Another special type of balancing numbers are
(a, b)-type balancing numbers.

Definition 1.2. Let a, b ∈ N. The an + b natural number is called an (a, b)-type
balancing number if the following equation holds for a suitable r ∈ N:

(a+ b) + (2a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

Kovács, Liptai and Olajos published about (a, b)-type balancing numbers, see [4].
Consider the following simultaneous Pellian equation system:

x2 − 5y2 = 4 (1.4)

8x2 − z2 = 167. (1.5)

The solutions of this system provide the common elements of the Fibonacci series
and a (a, b)-type balancing numbers.

2. Theory of Thue equations

2.1. Continued Fraction Algorithm
The continued fractions play an important role in finding the solutions of Thue
equations and inequalities.
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Input: α ∈ R, α 6= 0, A ∈ Z
Output: a0 ∈ Z, a1, . . . an ∈ N, pn, qn ∈ Z
1. i← 0, α0 ← α, p−2 ← 0, p−1 ← 1, q−2 ← 1, q−1 ← 0
2. DO
3. ai ← bαic
4. pi ← aipi−1 + pi−2
5. qi ← aiqi−1 + qi−2
6. IF αi − ai = 0 THEN STOP
7. i← i+ 1
8. αi ← 1/(αi−1 − ai−1)
9. WHILE qi ≤ A

The algorithm provides the continued fraction expansion of the α real number,
the values ai, and the convergents, the pi

qi
. It is easy to see, that the algorithm

stops at the 6th step if and only if α is rational. Furthermore, for the convergents
the following inequality holds for every n ≥ 0:

1

(an+1 + 2)q2n
≤
∣∣∣∣α−

pn
qn

∣∣∣∣ <
1

q2n
(2.1)

If α is irrational, then (2.1) implies lim
n→∞

pn

qn
= α.

The right side of (2.1) characterizes the continued fractions. The following
lemma is due to Legendre

Lemma 2.1. (Legendre) Let α ∈ R and x, y ∈ Z, y 6= 0. If
∣∣∣∣α−

x

y

∣∣∣∣ <
1

2y2

holds, then
x

y
is a convergent to α.

2.2. Fast algorithm for finding the “small solutions”
Consider the following Thue inequality

|F (x, y)| ≤ m. (2.2)

The aim is to find the solutions of (2.2) where |y| < C and (x, y) = 1 (coprime
integers).

Remark 2.2. Using the coprime solutions it is easy to determine all the other so-
lutions:
Let |F (x, y)| ≤ m and (x, y) = d : x = x0d, y = y0d, (x0, y0) = 1. The method com-
putes (x0, y0) for which |F (x0, y0)| ≤ m and |F (x0d, y0d)| ≤ m⇒ dn |F (x0, y0)| ≤
m⇒ dn ≤ m

|F (x0, y0)|
, thus the possible values of d can be checked individually.
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Let α be the root of F (x, 1) = 0. Its conjugates: α(1), . . . , α(n). To find
the solutions we need to calculate some constants and bounds from the roots of
F (x, 1) = 0, the α(i) numbers. These are as follows:

c1 =
2|m| 1n

|α(j) − α(i)| ,

c2 =
|m|2n−1

∏
j 6=i

|α(j) − α(i)|

If α(i) = a+ bI is a complex number, then

c3 =

(
c2
|b|

) 1
n

.

Furthermore
c4 = (2c2)

1
n−2 .

Lemma 2.3. (Thue) The Thue equation F (x, y) = m has only finitely many
(x, y) ∈ Z2 solutions.

Remark 2.4. This lemma does not give any method on how to find these solutions.
Experience shows, that Thue equations usually only have few number and small in
absolute value solutions.

The following lemma gives described by A. Pethő provides a method to find the
solutions of a given Thue equation or inequality, up to a certain prescribed bound.

Lemma 2.5. (Pethő) For all (x, y) solutions of the (2.2) Thue-inequality either
|y| < max(c1, c3, c4) or

x

y
is a convergent in the continued fraction expansion of

one of the real conjugates of the α roots of F (x, 1) = 0, for which

|y| < (c2(A+ 2))
1

n−2 , where

A = max aj
j≤j0

, where j0 is the index for which the denominator of the convergent of

α(i) qj0 < C, qj0+1 > C holds.

The main point of the algorithm is, that if an (x, y) ∈ Z2 pair is a solution of
(2.2) then

x

y
is a good approximation of the roots of F (x, 1). We calculate the

“medium large” solutions with the simple continued fraction expansion of the roots
of F (x, 1), then we find the smaller solutions by elementary bounds and equations.
Remark 2.6.

• The constant C is is taken to be considerably large, for example 10500.

• The lemma provides the |y| < C solutions fast in this case as well, but does
not give any proof that no other solutions exist in the range |y| > C.
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• In the case of C = 10500 the α(i) number must be at least 1000 digits precise
for the continued fraction algorithm to work accurately.

• The value of A is generally small, as the continued fraction digits are small.

• The algorithm provies a way to reduce the C upper bound, by substituting
it with (c2(A+ 2))

1
n−2 , and reapplying the calculation. This can be done as

long as it yields new values for the upper bound, or until we get a value below
max(c1, c3, c4).

3. Main result: the Algorithm

3.1. Steps of the Algorithm
1. Calculate the αi roots of the polinomial.

2. For all roots perform the followings (parallelly):

(a) Calculate the constants c1, c2, c3, c4.
(b) For only the real αi-s calculate the continued fraction expansion and the

convergents, using the above described algorithm, and reduce the upper
bound as much as possible.

(c) Up to the newly calculated upper bound subsitute the convergents pk, qk
to see if they satisfy the |F (pk, qk)| ≤ m inequality.

(d) If yes, add (pk, qk) to the set of solutions.
(e) In the interval |y| < max(c1, c3, c4) find the solutions using an exhaustive

search.

Remark 3.1. The algorithm can be used to solve equations as well besides in-
equalites. In this case replace the ≤ operator with equality. The case is similar
with the absolute value too.

3.2. Parallelization
The implementation of the above described algorithm is rather inefficient in terms
of time, especially in the case of equations with large coefficients. Based on the
steps described above, the algorithm can be parallellized.

After calculating the roots of F (x, 1) = 0, the αi numbers, it is easy to see that
the operations that must be performed with the current αi root are independent
and such a dedicated process can be started for every αi root. This way the
continued fraction algorithm can be run parallelly, reducing the running time of
the algorithm. This gives the best speed-up if we have n processors for the n
different roots.

For each of the roots the exhaustive search must be performed in the interval
|y| < max(c1, c3, c4). On the other hand if we calculate this interval for every root,
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and then calculate their maximum we get the interval where we must perform the
search regardless of which root are we processing. Furthermore this search interval
can be divided to smaller parts as well, exactly as many parts as many processes
we have. By using this method not only we speed-up the algorithm, but eliminate
some otherwise redundant calculation.

It is obvious that the data parallellism of the algorithm is beneficial from many
aspects: not only the time to find the solutions is reduced, but the strain on the
individual processes is much less than in the sequential case. Furthermore the
practical implementation of the algorithm can be done relatively easily, as the
stages are totally independent and synchronization is only needed at the end of the
algorithm, to collect the solutions found by the individual processes.

4. Simultaneous Pell equations

Consider again the system given with the equations (1.2) and (1.3):

a1x
2 + b1y

2 = c1,

a2x
2 + b2z

2 = c2,

satisfiying the natural conditions a1b1 < 0, a2b2 < 0, c1c2 6= 0, a1c2 − a2c1 6= 0.
The algorithm to solve such equations can be derived from a combination of (1.2)
and (1.3), which leads to the solution of Thue equations of degree four. These types
of equations can be solved for instance with the method described above. Unfortu-
nately the number of Thue equations needed to solve increases as the coefficients,
the ai, bi, ci(i = 1, 2) numbers get larger.

Introduce the following equation by combining (1.2) and (1.3):

a3x
2 + b3y

2 + c3y
2 = 0, (4.1)

where a3, b3 and c3 are non-zero integers. For this equation the following lemma
holds.

Lemma 4.1. Assume that (x0, y0, z0) is a solution of (4.1) with z0 6= 0. Then
every integer (x, y, z) z 6= 0 solution of (4.1) can be parametrized in the following
way:

x = ±D
d
(−ax0s2 − 2by0rs+ bx0r

2),

y = ±D
d
(−ay0s2 − 2ax0rs+ by0r

2),

z = ±D
d
(−az0s2 + bz0r

2),

where r and s > 0 are coprime integers, D is a non negative integer and d | 2a2bcz30
is a non negative integer.
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Using this lemma we gain the following equation from the simultaneous Pell
equation system:

a1c
2
y(αi1s

2 + βi1sr + γi1r
2)2 + b1c

2
x(αi2s

2 + βi2sr + γi2r
2)2 = c1c

2
xc

2
y

( d
D

)2
. (4.2)

Expanding this equation we gain Thue equations of degree four. The number of
Thue equations we need to solve is exactly the number of divisors of the right hand
side of the equation. The solutions of these Thue equations are used to determine
the solutions of the Pellian system, using the given parametrization.

Furthermore, this step of the algorithm can be optimized. Only one Thue
inequality is needed to be solved instead of a series of Thue equations, as the
coefficients of the equations remain the same, only the right hand changes. By
this, the right hand side of the inequality has to be chosen so it corresponds to
the greatest of the original Thue equations. After calculating the solutions of the
inequality the solutions have to be tested to filter out the solutions that provide
different right sides than the original ones.

5. Running times

To demonstrate the program we have tested it on several examples. To compare
the results we ran the same examples using Maple 12. The examples were run
with the following configuration: Intel Pentium 4 3.2GHz dual core processor, 1GB
RAM. The speed-up is defined as the quotient of the parallel running time and the
sequential running time.

Comparison:

Maple 12 Own Program Speed-up
|f(x, y)| ≤ 200 1671 ms 34 ms 49.14
|g(x, y)| ≤ 27 843 ms 82 ms 10.28

f(x, y) = x3 + x2y − 2xy2 − y3,

g(x, y) = x6 + 20000x5y − 50015x4y2−
− 20x3y3 + 50000x2y4+

+ 20006xy5 + y6.

Considering another case, the
∣∣x19 + 2y19

∣∣ = 2 Thue equation was solved with
both a program written in C programming language using the PARI/GP computa-
tional package and the program created in this essay. The results are the following:

PARI/GP Own Program Speed-up∣∣x19 + 2y19
∣∣ = 2 11.7 sec 63.3 sec 0.18
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The difference is due to the program using the PARI/GP package uses the method
of Bilu and Hanrot, thus calculated the set of fundamental units of the algebraic
number field, and got better running times, but the order of magnitude is the same.

We tested the program with the following simultaneous Pell equation system
as well.

x2 − 5y2 = ±4,
z2 − 8x2 = 1.

From this system we gain the
∣∣s4 − 30s3r + 195s2r2 − 150sr3 + 25r4

∣∣ ≤ 96100

Thue inequality. The running time of Maple 12 was 573.921 seconds, while our
program solved the task in 395 milliseconds, which means a speed-up of about
1453. The program in L. Szalay’s article which was written in MAGMA [7] solved
the same inequality in about 4 seconds.

5.1. Further Pellian system examples
The following table shows some other simultaneous Pellian equation systems that
we have tested and compared with the program created by L. Szalay.

System Own Program MAGMA Speed-up
−11x2 + y2 = 1
−56x2 + z2 = 1 104ms 26sec 250
−7x2 + y2 = 2
−32x2 + z2 = −23 21sec 40sec 1.9
−8x2 + y2 = 1
−2x2 + 3z2 = 1 1.5sec 5sec 3.3
−5x2 + y2 = −20
−2x2 + z2 = 1 381ms 3sec 7.8
x2 − 2y2 = −1
x2 − 10z2 = −9 113ms 1sec 8.8

The table shows that the program proved to be faster in these cases, however
the difference is not always significant.

Consider now again the system belonging to (a, b)-type balancing numbers:

x2 − 5y2 = 4

8x2 − z2 = 167.

From this system the generated Thue inequality is:

|27889s4 + 37408s3r + 9046s2r2 − 972sr3 + 9r4| ≤ 1.008 · 1016.
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The Thue inequality has 58 solutions and those provide the sole solution of the
original system: (7, 3, 15). The running time in this case was approximately 6
minutes, whereas the MAGMA was unable to solve the system because the right
hand side of the inequality causes an overflow in the system.
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