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Abstract

A signed Roman dominating function (SRDF) on a graph G is a function
f : V (G) → {−1, 1, 2} such that

∑
u∈N [v] f(u) ≥ 1 for every v ∈ V (G), and

every vertex u ∈ V (G) for which f(u) = −1 is adjacent to at least one
vertex w for which f(w) = 2. A set {f1, f2, . . . , fd} of distinct signed Roman
dominating functions on G with the property that

∑d
i=1 fi(v) ≤ 1 for each

v ∈ V (G), is called a signed Roman dominating family (of functions) on G.
The maximum number of functions in a signed Roman dominating family on
G is the signed Roman domatic number of G, denoted by dsR(G). In this
paper we initiate the study of signed Roman domatic number in graphs and
we present some sharp bounds for dsR(G). In addition, we determine the
signed Roman domatic number of some graphs.

Keywords: signed Roman dominating function, signed Roman domination
number, signed Roman domatic number

MSC: 05C69

Annales Mathematicae et Informaticae
40 (2012) pp. 105–112
http://ami.ektf.hu

105



1. Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G).
The order |V | of G is denoted by n = n(G). For every vertex v ∈ V , the open
neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood
of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is d(v) = |N(v)|.
The minimum and maximum degree of a graph G are denoted by δ = δ(G) and
∆ = ∆(G), respectively. A graph G is k-regular if d(v) = k for each vertex v of G.
The open neighborhood of a set S ⊆ V is the set N(S) = ∪v∈SN(v), and the closed
neighborhood of S is the set N [S] = N(S)∪S. A tree is an acyclic connected graph.
The complement of a graph G is denoted by G. A cactus graph is a connected
graph in which any two cycles have at most one vertex in common. We write Kn

for the complete graph of order n and Cn for a cycle of length n.
A Roman dominating function (RDF) on a graph G = (V,E) is defined in

[6, 8] as a function f : V → {0, 1, 2} satisfying the condition that every vertex v
for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The
weight of an RDF f is the value ω(f) =

∑
v∈V f(v). The Roman domination

number of a graph G, denoted by γR(G), equals the minimum weight of an RDF
on G. The Roman domination number has been studied by several authors (see for
example [2, 3, 4]). A set {f1, f2, . . . , fd} of distinct Roman dominating functions
on G with the property that

∑d
i=1 fi(v) ≤ 2 for each v ∈ V (G), is called a Roman

dominating family (of functions) on G. The maximum number of functions in a
Roman dominating family (RD family) on G is the Roman domatic number of G,
denoted by dR(G). The Roman domatic number was introduced by Sheikholeslami
and Volkmann [7] and has been studied by several authors (see for example [5]).

A signed Roman dominating function (SRDF) on a graph G = (V,E) is defined
in [1] as a function f : V → {−1, 1, 2} such that

∑
u∈N [v] f(u) ≥ 1 for each v ∈

V (G), and such that every vertex u ∈ V (G) for which f(u) = −1 is adjacent to
at least one vertex w for which f(w) = 2. The weight of an SRDF f is the value
ω(f) =

∑
v∈V f(v). The signed Roman domination number of a graph G, denoted

by γsR(G), equals the minimum weight of an SRDF on G. A γsR(G)-function is
a signed Roman dominating function of G with weight γsR(G). A signed Roman
dominating function f : V → {−1, 1, 2} can be represented by the ordered partition
(V−1, V1, V2) (or (V f

−1, V
f
1 , V

f
2 ) to refer f) of V , where Vi = {v ∈ V | f(v) = i}. In

this representation, its weight is ω(f) = |V1|+ 2|V2| − |V−1|.
A set {f1, f2, . . . , fd} of distinct signed Roman dominating functions on G with

the property that
∑d

i=1 fi(v) ≤ 1 for each v ∈ V (G), is called a signed Roman
dominating family (of functions) on G. The maximum number of functions in a
signed Roman dominating family (SRD family) on G is the signed Roman domatic
number of G, denoted by dsR(G). The signed Roman domatic number is well-
defined and

dsR(G) ≥ 1 (1.1)

for all graphs G since the set consisting of the SRDF with constant value 1 forms
an SRD family on G. If G1, G2, . . . , Gk are the connected components of G, then
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obviously dsR(G) = min{dsR(Gi) | 1 ≤ i ≤ k}. Hence, we only consider connected
graphs.

Our purpose in this paper is to initiate the study of signed Roman domatic
number in graphs. We first study basic properties and bounds for the signed
Roman domatic number of a graph. In addition, we determine the signed Roman
domatic number of some classes of graphs.

We make use of the following results in this paper.

Proposition A ([1]). If Kn is the complete graph of order n ≥ 1, then γsR(Kn) =
1, unless n = 3 in which case γsR(Kn) = 2.

Proposition B ([1]).

1. For n ≥ 3, γsR(Cn) = d 2n3 e,
2. For n ≥ 2, γsR(Pn) = b 2n3 c.

Proposition C ([1]). Let G be a graph of order n ≥ 1. Then γsR(G) = n if and
only if G = Kn.

Proposition D ([1]). If G is a δ-regular graph of order n with δ ≥ 1, then
γsR(G) ≥ dn/(δ + 1)e.

2. Properties of the signed Roman domatic number

In this section we present basic properties of dsR(G) and sharp bounds on the
signed Roman domatic number of a graph.

Theorem 2.1. For every graph G,

dsR(G) ≤ δ(G) + 1.

Moreover, if dsR(G) = δ(G) + 1, then for each SRD family {f1, f2, . . . , fd} on G
with d = dsR(G) and each vertex v of minimum degree,

∑
u∈N [v] fi(u) = 1 for each

function fi and
∑d

i=1 fi(u) = 1 for all u ∈ N [v].

Proof. If dsR(G) = 1, the result is immediate. Let now dsR(G) ≥ 2 and let
{f1, f2, . . . , fd} be an SRD family on G such that d = dsR(G). Assume that v
is a vertex of minimum degree δ(G). We have

d ≤
d∑

i=1

∑

u∈N [v]

fi(u) =
∑

u∈N [v]

d∑

i=1

fi(u) ≤
∑

u∈N [v]

1 = δ(G) + 1.

Thus dsR(G) ≤ δ(G) + 1.
If dsR(G) = δ + 1, then the two inequalities occurring in the proof become

equalities. Hence for the SRD family {f1, f2, . . . , fd} on G and for each vertex v
of minimum degree,

∑
u∈N [v] fi(u) = 1 for each function fi and

∑d
i=1 fi(u) = 1 for

all u ∈ N [v].
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The next results are immediate consequences of Proposition C and Theorem 2.1.

Corollary 2.2. For n ≥ 1, dsR(Kn) = 1.

Corollary 2.3. For any tree T of n ≥ 3, dsR(T ) ≤ 2. The bound is sharp for a
double star obtained from two vertex disjoint stars K1,3 by connecting their centers.

Problem 2.4. Characterize all trees T for which dsR(T ) = 2.

Corollary 2.5. For n ≥ 2, dsR(K1,n) = 1.

Proof. It follows from Theorem 2.1 that dsR(K1,n) ≤ 2. Suppose to the contrary
that dsR(K1,n) = 2 and assume that {f1, f2} is an SRD family on K1,n. Let
V (K1,n) = {v, u1, . . . , un} and E(K1,n) = {vui | 1 ≤ i ≤ n}. Theorem 2.1 implies
that f1(v) + f2(v) = 1. Since fj(x) ∈ {−1, 1, 2} for each j and each vertex x, we
deduce that f1(v) = −1 and f2(v) = 2 or f1(v) = 2 and f2(v) = −1. Assume,
without loss of generality, that f1(v) = −1 and f2(v) = 2. By Theorem 2.1, we
must have f2(ui) +f2(v) = 1 for each 1 ≤ i ≤ n and therefore f2(ui) = −1 for each
1 ≤ i ≤ n. Since n ≥ 2, we obtain the contradiction 1 ≤∑x∈N [v] f2(x) = 2−n ≤ 0.
Thus dsR(K1,n) = 1.

Theorem 2.6. If G is a graph of order n, then

γsR(G) · dsR(G) ≤ n.

Moreover, if γsR(G) · dsR(G) = n, then for each SRD family {f1, f2, . . . , fd} on G

with d = dsR(G), each function fi is a γsR(G)-function and
∑d

i=1 fi(v) = 1 for all
v ∈ V .

Proof. Let {f1, f2, . . . , fd} be an SRD family on G such that d = dsR(G) and let
v ∈ V . Then

d · γsR(G) =
d∑

i=1

γsR(G) ≤
d∑

i=1

∑

v∈V
fi(v) =

∑

v∈V

d∑

i=1

fi(v) ≤
∑

v∈V
1 = n.

If γsR(G) · dsR(G) = n, then the two inequalities occurring in the proof be-
come equalities. Hence for the SRD family {f1, f2, . . . , fd} on G and for each i,∑

v∈V fi(v) = γsR(G). Thus each function fi is a γsR(G)-function, and
∑d

i=1 fi(v)
= 1 for all v ∈ V .

The next two results are immediate consequences of Propositions B, C and
Theorem 2.6.

Corollary 2.7. For n ≥ 3, dsR(Cn) = 1.

Corollary 2.8. Let G be a graph of order n ≥ 1. Then γsR(G) = n and dsR(G) = 1
if and only if G = Kn.

Corollary 2.9. For n ≥ 1, dsR(Pn) = 1, unless n = 2 in which case dsR(Pn) = 2.
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Proof. If follows from Proposition B and Theorem 2.6 that dsR(Pn) = 1, unless
n = 2 or n = 4. Let Pn := v1v2 . . . vn. First let n = 2. Define the functions
fi : {v1, v2} → {−1, 1, 2} for i = 1, 2 by f1(v1) = 2, f1(v2) = −1, f2(v1) = −1 and
f2(v2) = 2. Obviously f1 and f2 are signed Roman dominating functions of P2

and {f1, f2} is a signed Roman dominating family on P2. Hence dsR(P2) ≥ 2.
Therefore dsR(P2) = 2 by Theorem 2.1.

Now let n = 4. It follows from Theorem 2.1 that dsR(P4) ≤ 2. Suppose to
the contrary that dsR(P4) = 2 and let {f1, f2} be a signed Roman dominating
family on P4. By Theorem 2.1, we must have fi(v1) + fi(v2) = 1 for i = 1, 2 and
f1(v2) + f2(v2) = 1. By Theorem 2.1, f1(v1) + f2(v1) = 1. Similarly, we have
f1(v4) + f2(v4) = 1. Thus f1(vi) + f2(vi) = 1 for 1 ≤ i ≤ 4. Since f1(vi), f2(vi) ∈
{−1, 1, 2} and f1(vi) + f2(vi) = 1, we deduce that f1(vi) = −1, f2(vi) = 2 or
f1(vi) = 2, f2(vi) = −1 for 1 ≤ i ≤ 4. Assume, without loss of generality, that
f1(v1) = 2 and f2(v1) = −1. Since fi(v1) + fi(v2) = 1 for i = 1, 2, we must have
f1(v2) = −1 and f2(v2) = 2. If f1(v3) = −1, then we have

∑
u∈N [v2]

f1(u) ≤ 0

which is a contradiction. Thus, f1(v3) = 2 and hence f2(v3) = −1 which implies
that

∑
u∈N [v2]

f2(u) ≤ 0 which is a contradiction again. Therefore dsR(P4) = 1
and the proof is complete.

Theorem 2.10. If Kn is the complete graph of order n ≥ 1, then dsR(Kn) = n,
unless n = 3 in which case dsR(Kn) = 1.

Proof. If n = 3, the the result follows from Proposition A and Theorem 2.6. Now
let n 6= 3 and let V (Kn) = {v0, v1, . . . , vn−1} be the vertex set of Kn. Consider
two cases.

Case 1. Assume that n is even. Define the functions f1, f2, . . . , fn as follows.
f1(vn−1) = 2, f1(vi) = −1 if 0 ≤ i ≤ n−2

2 and f1(vi) = 1 if n
2 ≤ i ≤ n− 2, and for

2 ≤ j ≤ q and 0 ≤ i ≤ n− 1,

fj(vi) = fj−1(vi+j−1),

where the sum is taken modulo n. It is easy to see that fj is a signed Roman
dominating function of Kn of weight 1 and for each 1 ≤ j ≤ n and {f1, f2, . . . , fn}
is a signed Roman dominating family on Kn. Hence dsR(Kn) ≥ n. Therefore
dsR(Kn) = n by Proposition A and Theorem 2.6.

Case 2. Assume that n is odd. Define the functions f1, f2, . . . , fn as follows.
f1(vn−1) = f(vn−2) = 2, f1(vi) = −1 if 0 ≤ i ≤ n−1

2 and f1(vi) = 1 if n+1
2 ≤ i ≤

n− 3, and for 2 ≤ j ≤ q and 0 ≤ i ≤ n− 1,

fj(vi) = fj−1(vi+j−1),

where the sum is taken modulo n. It is easy to see that fj is a signed Roman
dominating function of Kn of weight 1, for each 1 ≤ j ≤ n and {f1, f2, . . . , fn}
is a signed Roman dominating family on Kn. Hence dsR(Kn) ≥ n. Therefore
dsR(Kn) = n by Proposition A and Theorem 2.6.
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For some regular graphs we will improve the upper bound given in Theorem 2.1.

Theorem 2.11. Let G be a δ-regular graph of order n such that δ ≥ 1. If n 6≡
0 (mod (δ + 1)), then dsR(G) ≤ δ.
Proof. Since n 6≡ 0 (mod (δ + 1)), we deduce that n = p(δ + 1) + r with integers
p ≥ 1 and 1 ≤ r ≤ δ. Let {f1, f2, . . . , fd} be an SRD family on G such that
d = dsR(G). It follows that

d∑

i=1

ω(fi) =

d∑

i=1

∑

v∈V
fi(v) =

∑

v∈V

d∑

i=1

fi(v) ≤
∑

v∈V
1 = n.

Proposition D implies ω(fi) ≥ γsR(G) ≥ p + 1 for each i ∈ {1, 2, . . . , d}. If we
suppose to the contrary that d ≥ δ + 1, then the above inequality chain leads to
the contradiction

n ≥
d∑

i=1

ω(fi) ≥ d(p+ 1) ≥ (δ + 1)(p+ 1) = p(δ + 1) + δ + 1 > n.

Thus d ≤ δ, and the proof is complete.

Theorem 2.10 demonstrates that Theorem 2.11 is not valid in general when
n ≡ 0 (mod (δ + 1)).

Theorem 2.12. If G is a graph of order n ≥ 1, then

γsR(G) + dsR(G) ≤ n+ 1 (2.1)

with equality if and only if G ' Kn or G ' Kn (n 6= 3).

Proof. It follows from Theorem 2.6 that

γsR(G) + dsR(G) ≤ n

dsR(G)
+ dsR(G). (2.2)

According to Theorem 2.1, we have 1 ≤ dsR(G) ≤ n. Using these bounds, and the
fact that the function g(x) = x+ n/x is decreasing for 1 ≤ x ≤ √n and increasing
for
√
n ≤ x ≤ n, the last inequality leads to the desired bound immediately.

If G ' Kn (n 6= 3) then it follows from Proposition A and Theorem 2.10 that
γsR(G) + dsR(G) = n + 1. If G ' Kn, then it follows from Proposition C and
Corollary 2.2 that γsR(G) + dsR(G) = n+ 1.

Conversely, let equality hold in (2.1). It follows from (2.2) that

n+ 1 = γsR(G) + dsR(G) ≤ n

dsR(G)
+ dsR(G) ≤ n+ 1,

which implies that γsR(G) = n
dsR(G) and dsR(G) = 1 or dsR(G) = n. If dsR(G) = n,

then δ(G) = n − 1 by Theorem 2.1 and hence G is a complete graph Kn. Since
also γsR(G) = 1, we deduce that n 6= 3 and hence G ' Kn (n 6= 3). If dsR(G) = 1,
then γsR(G) = n, and it follows from Proposition C that G ' Kn. This completes
the proof.
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As an application of Theorems 2.1 and 2.11, we will prove the following Nordhaus-
Gaddum type result.

Theorem 2.13. For every graph G of order n,

dsR(G) + dsR(G) ≤ n+ 1. (2.3)

Furthermore, dsR(G) + dsR(G) = n + 1 if and only if n 6= 3 and G ' Kn or
G ' Kn.

Proof. It follows from Theorem 2.1 that

dsR(G) + dsR(G) ≤ (δ(G) + 1) + (δ(G) + 1)

= (δ(G) + 1) + (n−∆(G)− 1 + 1) ≤ n+ 1.

If G is not regular, then ∆(G)−δ(G) ≥ 1, and hence the above inequality chain
implies the better bound dsR(G) + dsR(G) ≤ n.

If n 6= 3 and G ' Kn or G ' Kn, then Corollary 2.2 and Theorem 2.10 lead to
dsR(G) + dsR(G) = n+ 1.

Conversely, assume that dsR(G) + dsR(G) = n + 1. Then G is δ-regular and
thus G is (n− δ − 1)-regular. If δ = 0 or δ = n− 1, then G ' Kn or G ' Kn, and
we obtain the desired result.

Next assume that 1 ≤ δ ≤ n− 2 and 1 ≤ δ(G) = n− δ− 1 ≤ n− 2. We assume,
without loss of generality, that δ ≤ (n−1)/2. If n 6≡ 0 (mod (δ+1)), then it follows
from Theorems 2.1 and 2.11 that

dsR(G) + dsR(G) ≤ δ(G) + (δ(G) + 1)

= δ(G) + (n− δ(G)− 1 + 1) = n,

a contradiction. Next assume that n ≡ 0 (mod (δ + 1)). Then n = p(δ + 1) with
an integer p ≥ 2. If n 6≡ 0 (mod (n − δ)), then it follows from Theorems 2.1 and
2.11 that

dsR(G) + dsR(G) ≤ (δ(G) + 1) + δ(G)

= δ(G) + 1 + (n− δ(G)− 1) = n,

a contradiction. Therefore assume that n ≡ 0 (mod (n − δ)). Then n = q(n − δ)
with an integer q ≥ 2. Since δ ≤ (n− 1)/2, this leads to the contradiction

n = q(n− δ) ≥
(
n− n− 1

2

)
=
q(n+ 1)

2
≥ n+ 1,

and the proof is complete.

The next result is a generalization of Corollary 2.3.

Theorem 2.14. If G is a connected cactus graph, then dsR(G) ≤ 2.
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Proof. Let d = dsR(G). If δ(G) ≤ 1, then Theorem 2.1 implies the desired bound
d ≤ 2 immediately.

It remains the case that δ(G) = 2. If G is a cycle, then the result follows from
Corollary 2.7. Otherwise, the cactus graph G contains a cycle v1v2 . . . vtv1 as an
end block with exactly one cut vertex, say v1. Applying Theorem 2.1, we see that
d ≤ 3. Suppose to the contrary that d = 3. Let {f1, f2, f3} be a signed Roman
dominating family on G.

Claim. If fi(vj) = 2 for 1 ≤ i ≤ 3 and 2 ≤ j ≤ t, then d ≤ 2.

Proof of claim. Assume, without loss of generality, that f1(v2) = 2. Because
of f1(v2) + f2(v2) + f3(v2) ≤ 1, we deduce that f2(v2) = f3(v2) = −1. Since
fi is a signed Roman dominating function, we see that fi(v1) = 2 or fi(v3) = 2
for 2 ≤ i ≤ 3. Assume, without loss of generality, that f2(v1) = 2. It follows
as above that f1(v1) = f3(v1) = −1. Hence we obtain the contradiction 1 ≤∑

x∈N [v2]
f3(x) = −2 + f3(v3) ≤ 0, and the claim is proved.

Thus we assume that fi(vj) ≤ 1 for 1 ≤ i ≤ 3 and 2 ≤ j ≤ t. If t ≥ 4, then we
conclude that fi(v3) = 1 for 1 ≤ i ≤ 3, a contradiction to f1(v3)+f2(v3)+f3(v3) ≤
1. Finally, assume that t = 3. If fi(v1) ≤ 1 for 1 ≤ i ≤ 3, then fi(v2) = 1 for
1 ≤ i ≤ 3, a contradiction. Now assume, without loss of generality, that f1(v1) = 2.
This implies that f2(v1) = f3(v1) = −1 and therefore f2(v2) = f3(v2) = f2(v3) =
f3(v3) = 1. This leads to f1(v2) = f1(v3) = −1. Thus we obtain the contradiction
1 ≤∑x∈N [v2]

f1(x) = f1(v1) + f1(v2) + f1(v3) = 0, and the proof is complete.
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