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Abstract

GSOSM algorithm is a method to reconstruct a surface from a set of
scattered points. Implementing this algorithm on a sequential or parallel
method contains several interesting questions. In this article we try to give
some details on algorithms and problems implementing this method. The
aim of the paper is to give ideas and details about the data structures and
the implementation, and we draw the attention to possible problems the
algorithm may run into. This may help those programmers who implement
this type of algorithms for the first time, and will face these challenges.
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1. Introduction

The GSOSM stands for Growing Self-Organizing Surface Maps. This method fo-
cuses on the problem, when we have a 3D body, its surface is scanned with a 3D
scanner, and we have a set of points from its surface. These unordered, uncon-
nected, unorganized set of points called the Mesh (throughout in this article it is
referred as M).

What we want is to reconstruct the body from this scratch. We usually has
no conception about the target body, however it is supposed it has a spherical
topology. Usually we don’t want to have as many points as the Mesh contains
when we reach the final state. The reconstructed body’s surface is build up with
triangles.
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The reconstruction starts from a small and simple object, for example from a
triangulated cube. This is a proper 3D object; its surface is covered with triangles
at the beginning. During the process we pull the points of this object towards the
Mesh points, add some new points (and triangles) to make it more complex, until
it becomes very similar to the target body. This object in this article is referred to
as P .

The GSOSM method and the algorithm are used in this paper is discussed
in several articles. In [5] the mesh was divided into subdomains, and was recon-
structed in local parts using radial base functions, and was blended together at the
end. This approaches was extended and modified in several ways e.q. in [6, 7, 8].
Another approach was presented using SOM (self-organizing map) methods based
on Kohonen unsupervised artificial neural network (ANN) model, like GCS (grow-
ing cell structures) in [9], or GNG (growing neural gas) in [10]. In [11] the GCS
model was transformed into NM (neural mesh) using statistical learning and the
Laplacian-based smooth operator was also added. In [12] a GSOSM was introduced
using a CCHL (competitive connection Hebbian learning) rule which produces a
complete triangulation.

We use [1] as a basis, however other articles contain some modifications on the
process (like [3] uses no Laplacian smoothing). We implemented the steps [2], but
instead of the standard implementation of the Kohonen neural network, we choose
to store the data in usual high level programming language collections, like lists
and objects. We separated the code from these data elements, so we cannot say
it is a standard neural network approach. In section 4 we give some details which
kind of data structures we use.

We implemented the GSOSM steps from paper [2], as at first we wanted to
reproduce the results on a sequential way. Here we discuss the problems we found
during the implementation.

2. The GSOSM steps

During the preparation of the GSOSM method (described in [1]) we must load
the points of M , the points and the surface definition of P , and all the settings,
the parameters of the reconstruction from disk or other data source. We use the
GeomView Object File Format (.off, see [13]) for readingM and P , as it is suitable
for storing point clouds with or without surface information as well.

During the GSOSM we will process the points of theM in a random order, this
is why we handle the list of points unordered (unorganized). The random order is
important as we want P to grow every direction with the same probability. The
main steps are:

1. let s ∈M a random point from the target space

2. find w ∈ P the closest point (shortest distance from s) of the object
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3. pull w and the topological neighbours of w towards to s, and set them “active”
state with increasing a counter

4. sometimes add a new point to P to make it more complex by vertex split,
inserting new triangles to the surface as well

5. sometimes delete the inactive points (and triangles) from P ’s surface using
edge collapse.

The frequency of “sometimes” when we execute the vertex split or edge collapse
is determined by the parameters of the process, usually based on the progress
percentage.

3. GSOSM step 1,2: selecting s and find w

In the first step we select a random point s ∈ M to be processed. We must find
the winner point w ∈ P , which is the closest point of P to s.

The selection of w is based on the distance of s and the points of P which can
be calculated the following way. Let p ∈ P be any point, and calculate by

dist(s, p) =
√
(p.x− s.x)2 + (p.y − s.y)2 + (p.z − s.z)2,

w := {p : p ∈ P ∧ @q ∈ P : dist(q, s) < dist(p, s)}.
Note: as we don’t need the final value of the distance, it is only compared

to determine the minimum, we don’t need to calculate the square root, only the
expression inside the square root. However in 3D space it’s not so simple. We need
the winner to pick the closest point to s, to pull this winner and its neighbours
towards to s. Let P be a large flat cuboid (as it can be seen if Figure 1) , and
let s below the cuboid. A central point X on the other side is the closest point of
the triangle’s corner forming the surface. If we select this as the winner, and pull
it towards to s, the edges around X will cross the lower plane of the cuboid, and
after the transformation P loses its spherical topology.

xv

B C

A A

B C

Figure 1: Selecting the winner from the wrong side

To prevent this behaviour, we must store the normal vectors of the triangles
on the surface of P . As we use the .OFF file format (mentioned early) to read P ,
and in this file the normal vectors are not stored – after reading and reconstruct-
ing points and triangles of P , we must calculate the normal vectors by ourselves.
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To do this, we suppose that at the start phase P is convex. In this case if we
have triangle(A,B,C), we can calculate −⇀n normal vector by the following way(see
Figure 2): −−⇀

AB = B −A, −⇀
AC = C −A, −⇀n =

−−⇀
AB ×−⇀AC.

C

A

B−⇀
AC

−−⇀
AB

−⇀v

Figure 2: A-B-C triangle and its normal vector

The −⇀n is a normal vector, but its direction might be wrong. The normal vector
must point out of the body, not to its inner parts. We suppose that at this phase
P is convex, so all the points of P are on the same side of the plane defined by the
triangle(A,B,C). In this case any of them can be a good representative (except
the points, which lays on this plane as well). Select any point x at the surface of
P . Calculate

−⇀
Ax and its length. If it is not zero, this x is suitable to determine the

correct direction of −⇀n . If −⇀n points to the right direction, the α angle between −⇀n
and
−⇀
Ax is a non-acute angle. Shift the two vectors to point A, and calculate the

value of cosα:
−⇀
Ax := x−A, ‖ −⇀Ax ‖:=

√
(x.x− a.x)2 + (x.y − a.y)2 + (x.z − a.z)2

cosα :=
−⇀n · (x−A)
‖ −⇀n ‖‖ x−A ‖

Note: as we know, when α is a non-acute angle, cosα < 0. As we can see in the
formula, the sign of cosα depends on the sign of the numerator, as the denominator
always positive. So we need to evaluate the numerator expression only to determine
the sign of cosα. If its sign is positive, we have to change the direction of −⇀n to
point into the opposite direction.

At the beginning we suppose that P has a spherical geometry, and we want to
keep this property during the progress at all costs. According to this geometry,
each p ∈ P surface point can be a corner point of several edges (and so a part of
several triangles). We will notate these as p.triangles and p.edges.

Notice, than an edge e can be attached to only two triangles at a time, according
to the spherical topology of the object. When we examine any point p from the
surface, we must check all the p.triangles, their normal vectors to determine if
the p point can be the winner or not. When all the normal vectors of all the
p.triangles points away from s, then p cannot be selected as a winner. We must
calculate the nominator of expression cosα again as (−⇀n + p)(s − p) for all the
triangles containing p.
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During the initial phase of the program, we load points P , reconstruct the
triangles of the surface, and calculates all the normal vectors. It is important to
keep the normal vectors, as later the P will lose its convexity, and we won’t be
able to determine the correct direction of a −⇀n . When we update the coordinates of
any of the points of P , we must re-calculate of the normal vectors of the triangles
based on this point. To do that, we can choose one of the following methods:

• At the beginning when the P was convex, and we determine the direction
of the normal vector, we store the information that which was point A, and
after using

−−⇀
AB and

−⇀
AC to calculate the normal vector, we must switch its

direction or not. With this extra information, we can recalculate the normal
vector any time from now, after the changes of the coordinates.

• When any of the coordinates from A, B or C changes, we recalculate the
normal vector immediately. The angle between the new normal vector and
the old one must be a sharp angle (the coordinates change little), so cosα ≥ 0.

At GSOSM step 4 new points and new triangles are added to the surface – we
must take care about their normal vectors as well. At GSOSM step 5 triangles
disappears, and points moves heavily. This step will update the normal vectors of
the remaining and affected triangles. We will talk about the calculating the normal
vectors when we examine these steps closely.

At step 1 we select an s ∈ M randomly, then delete it from M to prevent
selecting the same s later. At step 3 we pull points towards to s, but as we will see
later very slightly. After processing eachM points, the P won’t be complex enough,
and the surface of P won’t fit tight. So we will process the points ofM several times
again-and-again. The number of iteration is controlled by a parameter. When the
repeat counter is set to n, we might imagine as M that it owns every s ∈M points
n times. As a set contains every element once, we might handleM as a list instead.
But in that case we might select s1 ∈ M , then s2 ∈ M to process, but it might
happens that s1 = s2, and the winner w moves towards to these s twice in a short
time. So we choose to store each point once in M , and construct an empty M ′
set. Select an s ∈M randomly, and delete it from M , and add it to M ′. When M
becomes empty, we switch the M and M ′, and continues the process with the full
set again.

In [1] the points of P is organized into octree-based searching tree to speed up
the searching process. Other possibility is to use the Point Cloud library itself,
or the algorithm behind it. At the beginning of the implementation, we used a
simple list to store the points. Inside this list, we use no special order, so to find
the winner w, we must check all the elements of the list.

4. GSOSM data structures

According to section 2, we use the following data structures for the GSOSM process:

1. Point3D(x,y,z) is a base data for storing a point’s coordinates in 3D space
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2. Mesh(lp) holds a lists for the target body’s points on its surface given by
coordinates, lp is “list of Point3D”

3. NVec(x,y,z) is a normal vector, where x, y, z defines the triangle of the plane

4. Triangle(e1,e2,e2,nv) is a triangle on a 3D object’s surface, given by three
edges e1, e2 and e3, and nv stands for the normal vector of this triangle

5. Edge(a,b,lt) is an edge of a 3D object’s surface, where a and b are Points
(not Point3D, see later), and lt is a list of triangles based on this edge with
exactly 2 elements on this list

6. Point(x,y,z,le,T) is an advanced point, which stores not only its coordinates,
but le the list of edges (and along with the edges the triangles as well) which
are connected to this point, and T is the signal (active) counter, its value is
0 at the beginning (see 6)

7. Body(lp) is the body described by the list of Points (so the edges and the
triangles are given as well).

We found, that in our un-optimized data structure step 1 and 2 (winner find
and pulling) is about 34% of total time, the vertex split is about 6%, and the edge
collapse is about 58% of total computation time.

5. GSOSM step 2: pulling w towards s

When we select s ∈ M to process, and w ∈ P as the winner, we pull w towards s
along the p → s vector. The percentage of the pulling defines the new position of
w (marked as w′) in the following way:

−⇀w ′ := (1− λ)−⇀w + λ−⇀s .

This λ value is the parameter of the algorithm. The more strong we pull, the
faster the P fit tight to M . The more fast we pull, the P has less time to become
complex enough, so the final shape of P won’t be good enough.

Another problem appear as we test this part of the algorithm. If we pull
strongly, the winner goes to s heavily. When we select another s′ ∈ M , close
to the previous s, the same winner will be the closest again. In this case a peak
arises from a flat space, and the shape of the part of P cannot fit tight (see fig-
ure 3). Later, we will see that the fact the same w wins again and again means it
becomes highly active, and other points of P turn into useless (inactive). We will
erase them at step 5 using edge collapse, and we will lose a lot of points because
the winner won’t let other points to win.

The other reason to keep λ percentage low is that the more complex P is, the
more likely that after a pull of w the w′ will arrive inside the body of P (mainly
when P loses its convexity). With a small value of λ it is not 100% chance that it

82 N. F. Menyhárt, Z. Hernyák



Figure 3: The peak arises

won’t happen, but better chance to avoid this. Paper [1] advices the same, talks
about unwanted effects, and chance to convergence to local minima or fold-overs.

The value λ is not a constant. At the beginning of the process, larger (but still
small) values are better to let the P growing. Later we use smaller and smaller
values. It is usual, that the value of λ is determined by a function, which argument
is the progress percentage. This function converges to 0, to guarantee the conver-
gence of the algorithm. Instead of a slowly calculable function we evaluate and fix
these values in the parameters of the process, connecting the progress percentages
with a constant value. When the progress percentage reaches the next limit, the
λ changes its value to the next fix value. Paper [1] suggests using constant 6% for
the whole process as an experimental value. The choice of this fraction is discussed
in details in [4, 3].

5.1. Laplacian smoothing
After pulling the winner, [1] suggest using the Laplacian smoothing. In this case
we select and move only the direct topological neighbours of the winner w. Let
R(p) = {v1, v2, . . . , vn} be the direct topological neighbours of any p ∈ P . Let us
calculate for vi ∈ R(w) the Laplacian L as

L(vi) =
1

valence(vi)

∑

vk∈R(vi)

(vk − vi).

When −⇀ni is one of the normal vectors of point vi, the tangential component of
L can be calculated as

Lt(vi) = L(vi)− (L(vi)· −⇀ni)−⇀ni

and we can update the coordinates of vi to v′i as

v′i = vi + αlLt(vi).

In this expression αl is a constant parameter of the process, [1] suggests using
αl = 0.06 value, and suggest repeating this smoothing steps for 5 times.
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5.2. Simple neighbours pulling
Another possibility is to update the direct or remote neighbours position is to use
similar pulling towards to s as we used pulling w. We may use different λ values for
pulling the neighbours as was used for pulling the winner, as we might use different
λ values for different distances from w. We might describe the pulling at a given
percentage of the process with (p, λw, n, λ1, λ2, . . . , λn) tuple, where p defines the
process percentage, percw describes how strong must pull the winner, n stands for
how far we must walk from w winner, and λi (i ∈ [1, n]) sets how strong we must
pull the ith neighbour towards s. This method was suggested originally in [3].

5.3. Elastic pull
This method is the “elastic pull” model. This provides a more flexible way to handle
the pulling of the neighbours. In the elastic model the surface of P can be imagined
as the edges are made of a kind of material (soft rubber, hard and bold rubber,
rubbed rope, or a stretchable metal). The material is described using a constant
value γ ∈ R, 0 5 γ 5 1. Larger value means more flexibility. So 0.0 (0%) means no
stretch at all, while 1.0 (100%) means that the material can be stretched infinite.

When we have an edge(A,B) (a piece of rope), and we pull one end (A) of this
edge towards a direction, we can calculate how much the edge become longer. For
example after pulling endpoint A, the edge becomes 40% longer. When the rope
is made from soft rubber, which has a value λ , this rope can stretch easily, most
of the energy of pulling is absorbed, the power is passed to the other end of the
rope is only 0.4(1.0 − 0.8) = 0.08, which means 8%. This means, that the edges
attached to endpoint B stretches with 8% (pulling a point of a spider web causes
other points of the web moving along with). The next edge will become longer with
8%, which causes the next level edge become longer with 0.08(1.0 − 0.8) = 0.016
(1.6%). As we can see, a rope with value 0.8 causes that each next edges will be
less longer than the ones before. A rope with no ability to stretch (0.0) means that
aM% stretching is passed to the next level withM%(1.0−0.0) =M%, so it forces
the next level to stretch with the same amount. A value of 1.0 (100%, super elastic
material) means no stretching force is passed, M%(1.0− 1.0) = 0.0.

We can use different settings for different value of progression easily. At each
progression percentage we can describe the elastic pulling as (p, f,min), where p
is the percentage, f ∈ R, 0.0 5 f 5 1.0 the flexibility value of the edges, and
min ∈ R, 0.0 5 min < f is the minimal value of stretching.

6. Checking the topology of P

As we encounter several unwanted effects, we set up a method to check if any cross-
pull happened with P . A cross-pull is when a p point goes inside the body, and any
of the p.edges (a section) intersects any of the triangles of the surface. Let e(P,Q)
an edge with the endpoints P and Q, and t(A,B,C) a triangle given by corner
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Figure 4: Elastic pull a 2D sheet – without Laplacian smoothing

points A, B and C, and −⇀n is the normal vector of the triangle. We can check if an
edge e intersects the plane determined by triangle t. We can use the equation for
the plane determined by its’s normal vector and a point A of the plane:

n.x(x−A.x) + n.y(y −A.y) + n.z(z −A.z) = 0.

If we inserts both P and Q points into this equation, we can calculate the its
final value. If one of the values is 0, that points rests in the plane, other values
means the point is far from the plane. If the final values have different signs, it
means the two points are in the different side of the plane, otherwise they are in
the same side. So calculate the following final values:

p1 = n.x(P.x−A.x) + n.y(P.y −A.y) + n.z(P.z −A.z)
p2 = n.x(Q.x−A.x) + n.y(Q.y −A.y) + n.z(Q.z −A.z).

When p1 > 0∧p2 > 0 or p1 < 0∧p2 < 0 the edge e does not intersect the plane
of triangle t, so does not the intersect triangle t itself. If the previous condition
evaluates to false: edge e intersects the plane, but not necessarily intersects triangle
t (maybe the intersection point is outside of the triangle). Another check must
follow. First we calculate the intersection point coordinates (point q). We must
need the direction vector of the line −⇀pq = Q−P , then we must use the parametric
equation of a line S = P + t · −⇀pq : ∀t ∈ R produces point S on the lin. We are
searching for that t ∈ R which can be inserted into the equation of the plane and
produces zero. So we must solve the equation:

n.x(P.x+ t(Q.x− P.x)−A.x) + n.y(P.y + t(Q.y − P.y)−A.y)
+ n.z(p.z + t(Q.z − P.z)−A.z) = 0.

After elementary steps we have:

t =
n.x(P.x−A.x) + n.y(P.y −A.y) + n.z(P.z −A.z)

−(n.x · pq.x+ n.y · pg.y + n.z · pq.z) .

We use insert this value t back to the equation of the line, we give the intersection
point F as the following: F = A+ t · −⇀pq.
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Using this intersection point F we can check if it is outside the triangle t: if
F.x 5 A.x∧F.x 5 B.x∧F.x 5 C.x or F.x = A.x∧F.x = B.x∧F.x = C.x (and the
same happens with F.y and F.z) we can say that edge e won’t intersect triangle t.

Otherwise, we calculate whether the point F and point A are on the same
side of the line given by the two triangle points B-C. Using the same equations,
we can write the equation of the line B-C based on point B as the following:
(x−B.x)(−C.y +B.y) + (y −B.y)(C.x−B.x) = 0. Inserting point F and A into
this equation, we can check if the values have the same signs or not, so are point
F and A on the same side of the line. If for point F we got zero, it means the
intersection point is on the line, which (in this case) means are on the same side.
Checking this for point B (line based on points A and C), then for point C (based
on points A and B) we can check if the intersection point is inside the triangle or
not. If it is inside, we have an error in the surface.

We must further check the spherical topology property of P as well. It is done
by:

• check that all the points p ∈ P have at least three edges

• all the edges must be associated exactly to two triangles.

7. Setting up “active” state

After selecting w winner and pull towards to s, we increase the “active” counter of
w with 1. Paper [1] says only the winner must be updated this way, we consider
updating the selected neighbours as well. Otherwise, [1] says all the points of
P (except for the winner) the value of this signal counter must be decreased by
multiplying its value with α, where α ∈ R, 0 < α < 1. Paper [1] suggests using
α = 0.95 constant value.

This signal counter is used in section 9 to determine if a point p ∈ P is active
or not. When the value of the signal counter smaller than the required value, we
delete point p using edge collapse.

Later this paper talks about the machine accuracy problem, and substitutes
this method by a simple one: if a point p was not active since the last edge collapse
– it must be handle as inactive point.

So we need only a logical value attached to each point p, which are initially set
to false. When a point is selected as a winner, we set this flag to true. During the
edge collapse phase, we handles all the points as inactive, which are still false. At
the end of the edge collapse, we set all remaining points back to false. Another
way is when we have a global iteration counter, when a p is selected to be a winner,
we set the flag to the actual value of the counter (in which step was he selected
winner). We can handle a point as inactive, when its “last winner flag” is too low,
it has not been selected as a winner since the last edge collapse run.
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8. Vertex split

As we described, steps 1–3 move the points of P towards the mesh M surface
points. These steps will not increase (or decrease) the complexity of P , so applying
these steps won’t make P to be very similar to M . Step 4 targets to make P more
complex by adding new points to it. Simply adding a new point won’t help, as P
holds not only points but edges and triangles as well. After adding a new point we
must insert it into the edges and triangles properly, keeping the spherical topology
of P .

First we select the environment where the new Q point can be added. Select
the most active A ∈ P point (with the highest signal counter value), and one of its
direct topological neighbour B ∈ P , the most active neighbours of A.

Note: the standard method of vertex split suggests selecting point A ∈ P with
the most valence, as this point really need splitting. If we have several A1, . . . , An ∈
P points with the same highest valence value, we can choose between them paying
attention to its signal counter. An alternative way can be the following: select the
A ∈ P to apply the vertex split finding the longest edge, or one of a triangle base
point with the largest area.

Vertex split will happen using the edge(A,B) (there must be an edge between A
and B as point B is a direct topological neighbour of point A). As P has spherical
topology, there must be exactly two triangles based on this edge, so A and B must
have two common direct topological neighbours (C1 and C2). Let’s create a new
point C. This new point C won’t be on the section AB, as it is “edge split”, and
we want to use “vertex split”. This new point C must be around A.

On a 2D space coordinates C might be chosen as an inner point either inside
the triangle(A,B,C1) or inside triangle(A,B,C2).

A

B

C2

C1

rr r

r r

r r =⇒ A

B

C2

C1

Crr r

r r

r r. . . . . .. .
. . .

.

=⇒ A

B

C2

C1

Crr r

r r

r r
Figure 5: Vertex split – first three phase

In 3D we can put this new point around the edge(A,B), not necessary on the
triangles’ plane. Let’s calculate its coordinates as the following (for example):

C.x = (3/8A.x) + (3/8B.x) + (1/8C1.x) + (1/8C2.x)

C.y = (3/8A.y) + (3/8B.y) + (1/8C1.y) + (1/8C2.y)

C.z = (3/8A.z) + (3/8B.z) + (1/8C1.z) + (1/8C2.z).

The steps of vertex split are as follows:
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1. add new point C to the point list of P with no edge and no triangle informa-
tion

2. delete edge(A,B) and the triangles based on this edge (triangle(A,B,C1)
and triangle(A,B,C2)

3. create new edge(A,C) and edge(C,B) (don’t forget to add it to A.edges,
B.edges and C.edges)

4. create and insert triangle(A,C,C1), triangle(A,C,C2), then triangle(C,B,
C1) and triangle(C,B,C2) into P properly.

Notice that at this point the valence of A does not decreased, nor the complexity
of P increased, now we have 1 more edge, and 2 more triangles, and the long edge
AB has been replaced by two short edges.
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Figure 6: Vertex split – decreasing the valence of A

Further triangulation steps may be required. This time the steps are different
(p is the selected point around A):

1. remove edge(A, p), so remove triangle(A,C, p) and triangle(A,P,X) as well

2. define new edge(X,C)

3. define new triangles X,C, P and X,A,C

4. only when the new edge does not intersects any faces except for the removed
ones.

At this phase we added a new point C properly into the surface of P . This
surface has no hole anymore, has more point than before (more complex). To do
a better job at this point, we might want to redirect some edges of A into C, to
decrease the valence of A, and increase of C. If A has a valence of n, we might
want to redirect n/2 edges into C.

To do that, first we gather all the direct neighbours points of A into set N1
A.

Notice: after execution of the previous steps, C,C1, C2 ∈ N1
A, but B is not. Let’s

order these points as we could walk around A, starting from C, going to the direc-
tion towards C1.
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Figure 7: Vertex splitted cube – without decreased valences

Wemight think it is a good idea to decrease the valence ofA, that processing this
ordered list one-by-one we can redirect some edges to C. Select the A−C−C1−C3

quadrilateral, and follow the steps:

1. delete edge(A,C1) (decreasing the valence of A), and all the triangles based
on this edge (triangle(A,C,C1) and triangle(A,C1, C3))

2. add edge(C,C3) (increasing the valence of C)

3. add triangle(C,C1, C3), and triangle(A,C,C3).

We can continue and repeat these steps walking around this direction for a few
steps, and then we can turn around and walk on the other direction around A as
well, redirecting the edges, until n/2 edges are attached to C.

First of all: notice, that there is another possibility, than creating new edge
(edge(C,C3) for example) between remote points: the edges can intersect the sur-
face of P . So after planning a redirect, we can check the integrity and correctness
of the surface of P using the method described in 6. If any error encounters, we
step back to the correct state.

Second: what is working on 2D, won’t fit the 3D world. Let us suppose we have
a cube, each square contains 2 triangles. One of the flats we vertex split, inserting
a new C point and redirect the triangles on that square from the corner points to
C. After this we find our A−C −C1 −C3 quadrilateral, and follow the steps. On
Figure 8 we can see the schematics and on Figure 9 we can see how a cube can be
deformed by this method.

A

C3

C1

C C

A

C3

C2

Figure 8: Vertex splitted cube – before and after redirection
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Figure 9: Vertex splitted cube after several steps

9. Edge collapse

According to the algorithm, we select s, find w, pull w towards s, somehow we
pull the neighbours of w towards s as well, and sometimes we add new vertices to
increase the complexity of P using vertex split. After a short time we will find,
that P has inactive points, which never becomes a winner, they are far from the
points ofM , and are useless. Then we can clear them by another standard method
called edge collapse.

We can set when to execute this step based on the number of the vertices of P
(based on its complexity) or after every ν iterations. In [1] the suggested method
is to execute after every νn iterations, where ν = 20, and n is the size of P .

Selecting the less inactive or useless nodes we might select all the nodes which
were not active (not selected as winner). We might expand the immunity against
clearing to the ones which were selected and moved as a neighbour of any winner
as well, however [1] suggests giving immunity only for the winners only.

When we select a node a ∈ P to clear, we must select a direct neighbour b ∈ P
as well. We will clear node a redirecting its edges to b, so b’s valence will become
higher.

First we know that this step seems to be very easy in 2D, but in 3D it can
yield unwanted effects, and the spherical geometry can fail, but this effect arises
at the end of the collapsing. So we advise to save the entire state of P before the
collapsing as it will be modified several ways, and we might roll back to the original
state at the end. Another possibility is not to make any modification on the state
of P , instead we collect the modification instructions into a list, then check the
state of P according to this modifications steps, and if we find any failure, drop
this list and do nothing.

In 2D the steps seems very easy and clear:

• delete edge(a, b), and all the triangles based on this edge (triangle(a, b, c)
and triangle(a, b, d))

• find every triangles containing point a, and replace this corner point to b
(there is no triangle still exists which contains not only a and b as well,
because we drop them at the previous step)
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• delete point a, as it loses any connection to other points on the surface of P .

c

d

a
b

Figure 10: Edge collapse

The main problem is in step 2. When we have a triangle(x, y, a) for example,
we must replace edge(x, a) to edge(x, b). Might there is already an edge(x, b) in P ,
so this step sometimes creates a new edge, sometimes not. The same is true for the
triangles: triangle(x, y, a) becomes triangle(x, y, b), but sometimes this triangle
already exists.

To demonstrate the problem, see figure 11. We have a tetrahedron A−B−C−D
with point E on the edge between BD. It is interesting, that collapsing B → E
won’t cause any problem, we would drop triangles A − E − B and E − B − C,
and triangle A−B − C would become A−E − C which will close the shape, and
the tetrahedron still remain tetrahedron. But if we try to collapse edge E → A,
the whole side covered with A−B −E and A−E −B triangles would disappear.
After that B −E −C goes into B −A−C which is already exists, and E −C −B
changes to A−C−B which already exists as well. After the edge collapse steps we
would have only two triangles, and the shape of this 3D object loses its spherical
geometry and becomes a folded paper. This is the reason why we must prepare to
roll back the edge collapse at any step we made.

A

C

D

B

A

B

C

D

Figure 11: Edge collapse fails
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