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Abstract

Discrete spectral analysis and synthesis study the description of transla-
tion invariant function spaces over discrete Abelian groups. The basic build-
ing bricks are the exponential monomials. A remarkable result of R. J. Elliot
in 1965 claimed that spectral synthesis holds on any Abelian group, which
means that the exponential monomials span a dense linear subspace in any
pointwise-closed translation invariant linear space of complex valued func-
tions over the group. Unfortunately, the proof of this theorem had several
gaps. In this paper we give a short survey about the present status of discrete
spectral analysis and synthesis, we show that Elliot’s theorem is false, we give
a necessary condition for Abelian groups to have spectral synthesis and we
formulate a conjecture about a possible characterization of Abelian groups
having spectral synthesis.
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1. Introduction

Spectral analysis and spectral synthesis deal with the description of transla-
tion invariant function spaces over locally compact Abelian groups. We consider
the space C(G) of all complex valued continuous functions on a locally compact
Abelian group G, which is a locally convex topological linear space with respect to
the pointwise linear operations (addition, multiplication with scalars) and to the
topology of uniform convergence on compact sets. Continuous homomorphisms
of G into the additive topological group of complex numbers, and into the mul-
tiplicative topological group of nonzero complex numbers are called additive and
exponential functions, respectively. A polynomial is a finite linear combination of
products of additive functions and an exponential monomial is a product of a poly-
nomial and an exponential function. Linear combinations of exponential monomials
are called exponential polynomials.
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Suppose that a closed linear subspace in the space C(G) is given, which is
translation invariant, which means that if f belongs to this subspace then the
translate τyf of f by y, defined by

τyf(x) = f(x + y)

belongs to the subspace as well, for any x, y in G. Such subspaces are called varieties
and these are the main objectives of spectral analysis and spectral synthesis.

It turns out that exponential functions, or more generally, exponential mono-
mials can be considered as basic building bricks of varieties. A given variety may
or may not contain any exponential function or exponential monomial of the above
mentioned form. If it contains an exponential function, then we say that spectral
analysis holds for the variety. An exponential function in a variety can be consid-
ered as a kind of spectral value and the set of all exponential functions in a variety
is called the spectrum of the variety. It follows that spectral analysis for a variety
means that the spectrum of the variety is nonempty. On the other hand, the set
of all exponential monomials contained in a variety is called the spectral set of the
variety. It turns out that if an exponential monomial belongs to a variety, then the
exponential function appearing in the representation of this exponential monomial
belongs to the variety, too. Hence if the spectral set of a variety is nonempty, then
also the spectrum of the variety is nonempty and spectral analysis holds. There is,
however an even stronger property of some varieties, namely, if the spectral set of
the variety span a dense subspace of the variety. In this case we say that spectral
synthesis holds for the variety. It follows, that for nonzero varieties spectral syn-
thesis implies spectral analysis. If spectral analysis, resp. spectral synthesis holds
for every variety on an Abelian group, then we say that spectral analysis holds,
resp. spectral synthesis holds on the Abelian group. A famous and pioneer result
of L. Schwartz [1] exhibits the situation by stating that if the group is the reals
with the Euclidean topology, then spectral values do exist, that is, any nonzero va-
riety contains an exponential function, the spectrum is nonempty, spectral analysis
holds. Furthermore, spectral synthesis also holds in this situation: there are suf-
ficiently many exponential monomials in the variety in the sense that their linear
hull is dense in the subspace.

An interesting particular case is presented by discrete Abelian groups. Here the
problem seems to be purely algebraic: all complex functions are continuous, and
convergence is meant in the pointwise sense. The archetype is the additive group
of integers: in this case the closed translation invariant function spaces can be
characterized by systems of homogeneous linear difference equations with constant
coefficients. It is known that these function spaces are spanned by exponential
monomials corresponding to the characteristic values of the equation, together
with their multiplicities. In this sense the classical theory of homogeneous linear
difference equations with constant coefficients can be considered as spectral analysis
and spectral synthesis on the additive group of integers.

The next simplest case is the case of systems of homogeneous linear difference
equations with constant coefficients in several variables, or, in other words, spectral
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analysis and spectral synthesis on free Abelian groups with a finite number of
generators. As in this case a structure theorem is available, namely, any group
of this type is a direct product of finitely many copies of the additive group of
integers, it is not very surprising to have the corresponding - nontrivial - result
by M.Lefranc [2]: on finitely generated free Abelian groups spectral analysis and
spectral synthesis holds for any closed translation invariant subspace.

Based on these results the natural question arises: what about other discrete
Abelian groups? In his 1965 paper [4] R. J. Elliot presented a theorem on spec-
tral synthesis for arbitrary Abelian groups. However, in 1987 Z. Gajda drew my
attention to the fact that the proof of Elliot’s theorem had several gaps. Since
then several efforts have been made to solve the problem of discrete spectral analy-
sis and spectral synthesis on Abelian groups. In the subsequent paragraphs we
present a summary about the status of these problems. From now on we consider
only discrete Abelian groups and all the above mentioned concepts are meant in
the discrete setting.

2. Spectral analysis and spectral synthesis on fini-
tely generated Abelian groups

The first general result about spectral synthesis is due to M. Lefranc on free
Abelian groups of finite rank, that means, on groups of the form Zk with some
nonnegative integer k (see [2]).

Theorem 2.1. Spectral synthesis holds for any free Abelian group of finite rank.

Using the following simple lemma we can clarify the connection between spectral
synthesis and spectral analysis.

Lemma 2.2. Let G be an Abelian group, V a variety in C(G), p : G → C a nonzero
polynomial and m : G → C an exponential function. If the exponential monomial
pm belongs to V , then m belongs to V , too.

Proof. The statement is obvious if p is a nonzero constant. On the other hand, if
p is a nonconstant polynomial, then ∆yp is a nonzero polynomial for some y in G,
with degree one less than that of p. Moreover, by the identity

∆yp(x) m(x) = p(x + y)m(x)− p(x)m(x) = p(x + y)m(x + y)m(−y)− p(x)m(x)

which holds for each x, y in G it follows that the exponential monomial (∆yp)m
belongs to V for each y in G. Hence our statement follows by induction on the
degree of p. ¤

From this lemma we infer the following theorem.

Theorem 2.3. If spectral synthesis holds for an Abelian group, then also spectral
analysis holds for it.
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Using Theorem 2.1 we have the following easy consequence.

Theorem 2.4. Spectral analysis holds for any free Abelian group of finite rank.

The following theorem makes it possible to extend the above results.

Theorem 2.5. If spectral synthesis holds for an Abelian group then it holds for its
homomorphic images, too.

Proof. Suppose that G is an Abelian group, H is a homomorphic image of G and
let F : G → H be a surjective homomorphism. If V is a variety in C(H), then we
let

VF = {f ◦ F : f ∈ V } .

Using the surjectivity of F a routine calculation shows that VF is a variety in C(H).
Let Φ be an exponential monomial in VF of the form

Φ(x) = P (A1(x), A2(x), . . . , An(x))M(x) , (2.1)

where A1, A2, . . . , An are linearly independent additive functions on G, M is an
exponential on G, and P is a complex polynomial in n variables. By Lemma 2.2
the exponential M is in VF , too, hence M = m ◦ F holds for some m in V . If u, v
are arbitrary in H, then u = F (x) and v = F (y) for some x, y in G, which implies

m(u + v) = m(F (x) + F (y)) = m(F (x + y)) = M(x + y) = M(x)M(y) =

= m(F (x)) m(F (y)) = m(u)m(v) .

As m is never zero, hence m is an exponential in V . On the other hand, (2.1)
implies that

q(x) = P (A1(x), A2(x), . . . , An(x)) = p(F (x))

holds for each x in G with some function p : H → C. We show that p is a polynomial
on H. Using the Newton Interpolation Formula and the Taylor Formula in several
variables it follows easily that the functions A1, A2, . . . , An can be expressed as a
linear combination of some translates of q. On the other hand, if F (x) = F (y) for
some x, y in G, then q(x+ z) = q(y + z) holds for each z in G, hence Ai(x) = Ai(y)
for i = 1, 2, . . . , n. It follows that we can define the functions ai : H → C for
i = 1, 2, . . . , n by the equation

ai(u) = Ai(F (x)) ,

where x is arbitrary in G with the property F (x) = u. Further, we see immediately
that ai is additive for i = 1, 2, . . . , n. On the other hand,

p(u) = p(F (x)) = P (A1(x), A2(x), . . . , An(x)) = P (a1(u), a2(u), . . . , an(u))

holds for any u in H, hence p is a polynomial on H. This means that the exponential
monomial Φ above has the form Φ = ϕ ◦ F with some exponential monomial ϕ in
V . Finally, it is straightforward to verify that if the exponential monomials span a
dense subspace in VF , then the corresponding exponential monomials span a dense
subspace in V , so our proof is complete. ¤
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Using the well-known fact that every finitely generated Abelian group is the
homomorphic image of some free Abelian group of finite rank we have the following
result.

Theorem 2.6. Spectral synthesis and spectral analysis holds for any finitely gen-
erated Abelian group.

At this point a simple question can be formulated: is there any non-finitely
generated Abelian group, on which spectral synthesis, or spectral analysis holds?

3. Spectral analysis and spectral synthesis on arbi-
trary Abelian groups

In 1965 R. J. Elliot published the following result in the Proc. Cambridge Phil.
Soc. (see [4]):

Theorem 3.1. Spectral synthesis holds on any Abelian group.

Of course a theorem of this type would have closed all open problems concerning
discrete spectral analysis and spectral synthesis. Unfortunately, in 1990 the polish
mathematician Zbigniew Gajda called my attention to the fact that the proof of
Elliot’s theorem had several gaps. After several efforts of Gajda and myself we
were unable either to fill those gaps or to find a counterexample to Elliot’s result.
Obviously, the question about spectral analysis on arbitrary Abelian groups turned
to be open again. In this respect we could prove the following result (see [9]).

Theorem 3.2. Spectral analysis holds on every Abelian torsion group.

Proof. We show that every nonzero variety in C(G) contains a character. Let V
be any nonzero variety in C(G). Then by the Hahn–Banach theorem V is equal to
the annihilator of its annihilator, that is, there exists a set Λ of finitely supported
complex measures on G such that V is exactly the set of all functions in C(G) which
are annihilated by all members of Λ:

V = V (Λ) = {f |f ∈ C(G), 〈λ, f〉 = 0 for all λ ∈ Λ}.

We show that for any finite subset Γ in Λ its annihilator, V (Γ) contains a charac-
ter. Indeed, let FΓ denote the subgroup generated by the supports of the measures
belonging to Γ. Then FΓ is a finitely generated torsion group. The measures be-
longing to Γ can be considered as measures on FΓ and the annihilator of Γ in C(FΓ)
will be denoted by V (Γ)FΓ . This is a variety in C(FΓ). It is also nonzero. Indeed,
if f belongs to V then its restriction to FΓ belongs to V (Γ)FΓ . If, in addition, we
have f(x0) 6= 0 and y0 is in FΓ, then the translate of f by x0− y0 belongs to V , its
restriction to FΓ belongs to V (Γ)FΓ and at y0 it takes the value f(x0) 6= 0. Hence
V (Γ)FΓ is a nonzero variety in C(FΓ). As FΓ is finitely generated, by Theorem 2.6
spectral analysis holds, and, in particular V (Γ)FΓ contains exponential functions.
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As FΓ is a torsion group, any exponential function on FΓ is a character. That
means, V (Γ)FΓ contains a character of FΓ. It is well-known (see e.g. [3]) that
any character of FΓ can be extended to a character of G, and obviously any such
extension belongs to V (Γ).

Now we have proved that for any finite subset Γ of the set Λ the annihilator
V (Γ) contains a character. Let char(V ) denote the set of all characters contained
in V . Obviously char(V ) is a compact subset of Ĝ, the dual of G, because char(V )
is closed and Ĝ is compact. On the other hand, the system of nonempty compact
sets char(V (Γ)), where Γ is a finite subset of Λ, has the finite intersection property:

char(V (Γ1 ∪ Γ2)) ⊆ char(V (Γ1)) ∩ char(V (Γ2)).

We infer that the intersection of this system is nonempty, and obviously

∅ 6=
⋂

Γ⊆Λ finite

char(V (Γ)) ⊆ char(V ).

That means, char(V ) is nonempty, and the theorem is proved. ¤

This theorem presents a partial answer to our previous question: as obviously
there are Abelian torsion groups which are not finitely generated, hence there are
non-finitely generated Abelian groups on which spectral analysis holds.

In 2001 G. Székelyhidi in [8] presented a different approach to the result of
Lefranc, and he actually proved that spectral analysis holds on countably generated
Abelian groups, further, his method strongly supported the conjecture that spectral
analysis - hence also spectral synthesis - might fail to hold on free Abelian groups
having no generating set with cardinality less than the continuum. At the 41st
International Symposium on Functional Equations in 2003, Noszvaj, Hungary we
presented a counterexample to Theorem 3.1 of Elliot in [4]. The counterexample
depends on the following observation (see [10]).

Theorem 3.3. Let G be an Abelian group. If there exists a symmetric bi-additive
function B : G×G → C such that the variety V generated by the quadratic function
x 7→ B(x, x) is of infinite dimension, then spectral synthesis fails to hold for V .

Proof. Let f(x) = B(x, x) for all x in G. By the equation

f(x + y) = B(x + y, x + y) = B(x, x) + 2B(x, y) + B(y, y) (3.1)

we see that the translation invariant subspace generated by f is generated by the
functions 1, f and all the additive functions of the form x 7→ B(x, y), where y
runs through G. Hence our assumption on B is equivalent to the condition that
there are infinitely many functions of the form x 7→ B(x, y) with y in G, which are
linearly independent. This also implies that there is no positive integer n such that
B can be represented in the form

B(x, y) =
n∑

k=1

ak(x)bk(y),
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where ak, bk : G → C are additive functions (k = 1, 2, . . . , n). Indeed, the existence
of a representation of this form would mean that the number of linearly independent
additive functions of the form x 7→ B(x, y) is at most n.

It is clear that any translate of f , hence any function g in V satisfies

∆3
yg(x) = 0 (3.2)

for all x, y in G: this can be checked directly for f . Hence any exponential m in V
satisfies the same equation, which implies

m(x)
(
m(y)− 1

)3 = 0

for all x, y in G, and this means that m is identically 1. It follows that any
exponential monomial in V is a polynomial. By the results in [5] (see also [6]) and
by (3.2) g can be uniquely represented in the following form:

g(x) = A(x, x) + c(x) + d

for all x in G, where A : G×G → C is a symmetric bi-additive function, c : G → C
is additive and d is a complex number. Here "uniqueness" means that the "mono-
mial terms" x 7→ A(x, x), x 7→ c(x) and d are uniquely determined (see [6]). In
particular, any polynomial p in V has a similar representation, which means that
it can be written in the form

p(x) =
n∑

k=1

m∑

l=1

ckl ak(x)bl(x) + c(x) + d = p2(x) + c(x) + d

with some positive integers n,m, additive functions ak, bl, c : G → C and constants
ckl, d. Suppose that p2 is not identically zero. By assumption, p is the pointwise
limit of a net formed by linear combinations of translates of f , that means, by
functions of the form (3.1). Linear combinations of functions of the form (3.1) can
be written as

ϕ(x) = c B(x, x) + A(x) + D,

with some additive function A : G → C and constants c,D. Any net formed by
these functions has the form

ϕγ(x) = cγ B(x, x) + Aγ(x) + Dγ .

By pointwise convergence

lim
γ

1
2
∆2

yϕγ(x) =
1
2
∆2

yp(x) = p2(y)

follows for all x, y in G. On the other hand,

lim
γ

1
2
∆2

yϕγ(x) = B(y, y) lim
γ

cγ ,
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holds for all x, y in G, hence the limit limγ cγ = c exists and is different from zero,
which gives B(x, x) = 1

c p2(x) for all x in G and this is impossible.
We infer that any exponential monomial ϕ in V is actually a polynomial of

degree at most 1, which satisfies

∆2
yϕ(x) = 0 (3.3)

for each x, y in G, hence any function in the closed linear hull of the exponential
monomials in V satisfies this equation. However f does not satisfy (3.3), hence the
linear hull of the exponential monomials in V is not dense in V . ¤

Using this theorem we are in the position to disprove the result Theorem 3.1
of Elliot. In what follows Zω denotes the (non-complete) direct sum of countably
many copies of the additive group of integers, or, in other words, the set of all
finitely supported Z-valued functions on the nonnegative integers.

Theorem 3.4. Spectral synthesis fails to hold on any Abelian group with torsion
free rank at least ω.

Proof. First of all we will show that there exists a symmetric bi-additive function
B : Zω × Zω → C with the property that there are infinitely many linearly inde-
pendent functions of the form x 7→ B(x, y), where y is in Zω. For any nonnegative
integer n let pn denote the projection of the direct sum Zω onto the n-th copy
of Z. This means that for any x in Zω the number pn(x) is the coefficient of the
characteristic function of the singleton {n} in the unique representation of x. It
is clear that the functions pn are additive and linearly independent for different
choices of n. Let

B(x, y) =
∑

n

pn(x)pn(y)

for each x, y in Zω. The sum is finite for any fixed x, y, and obviously B is symmetric
and bi-additive. On the other hand, if χk is the characteristic function of the
singleton {k}, then we have

B(x, χk) =
∑

n

pn(x)pn(χk) = pk(x),

hence the functions x 7→ B(x, χk) are linearly independent for different nonnegative
integers k.

The next step is to show that if G is an Abelian group, H is a subgroup of G
and B : H × H → C is a symmetric, bi-additive function, then B extends to a
symmetric bi-additive function on G × G. Then the extension obviously satisfies
the property given in Theorem 3.3 and our statement follows. On the other hand,
the existence of the desired extension is proved in [7], Theorem 2.

The proof is complete. ¤

By this theorem Lefranc’s result is the best possible for free Abelian groups:
spectral synthesis holds exactly on the finitely generated ones. Hence the following
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question naturally arises: can spectral synthesis hold on non-finitely generated
Abelian groups? If the answer is "yes" then we can ask: is it true that if spectral
synthesis fails to hold on an Abelian group, then its torsion free rank is at least ω ?
In the subsequent paragraphs we shall give partial answers to these questions.

4. Spectral synthesis on Abelian torsion groups

In [11] we proved the following theorem.

Theorem 4.1. Spectral synthesis holds on any Abelian torsion group.

Proof. Let V be a proper variety in C(G) and let W denote the linear span of
the set of all characters contained in V . We have to prove that W is dense in V .
Supposing the contrary there exists a finitely supported measure x on G such that
〈x, γ〉 = 0 whenever γ is a character in V , but 〈x, f0〉 6= 0 for some f0 in V .

Let J denote the support of x; then J is a finite subset of G. Let H denote
the family of all finite subgroups of G containing J . For every H in H let VH

denote the set of the restrictions of the elements of V to H. It is easy to check
that VH is a variety in C(H). Whenever a function Φ is defined on J then we put
〈x, Φ〉 =

∑
g∈J x(g)Φ(g). If H is in H then 〈x, f0|H〉 = 〈x, f0〉 6= 0. Since spectral

synthesis holds on H and f0|H belongs to VH , there is a character γH of H such
that γH belongs to VH and 〈x, γH〉 6= 0.

Hence we have a net (γH) along the directed set H in the product space TG

(T is the complex unit circle). From its compactness it follows that this net has
an accumulation point, that is, there is a function γ0 : G → T such that for every
finite subset F of G and for every ε > 0 there exists an H in H with F ∪ J is
included in H and |γ0(g)− γH(g)| < ε holds for each g in F . It is clear that γ0 is
a character of G. As V is closed, we also have that γ0 belongs to V .

Since each element g in J has a finite order, the set of values γ(g), where γ is
a character and g is in J is finite. This implies that the set 〈x, γH〉 for H in H
is a finite set of complex numbers. As 〈x, γ0〉 is one of these numbers it follows
〈x, γ0〉 6= 0. This, however, contradicts the fact that γ0 is in V . ¤

This theorem shows that there are non-finitely generated Abelian groups on
which spectral synthesis holds. Hence we can formulate a quite reasonable conjec-
ture: spectral synthesis holds on an Abelian group if and only if its torsion free
rank is finite.

5. Characterization of Abelian groups with spectral
analysis and spectral synthesis

In [12] M. Laczkovich and G. Székelyhidi proved the following result.

Theorem 5.1. Spectral analysis holds on an Abelian group if and only if its torsion
free rank is less than the continuum.
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According to Theorem 3.4 there are Abelian groups on which spectral analysis
holds and spectral synthesis fails to hold: for instance, any Abelian group with
torsion free rank ω, like Zω above. On the other hand, a complete description
of those Abelian groups on which spectral synthesis holds is still missing. The
conjecture formulated in the previous section has neither been proved nor disproved
yet. An interesting situation can be presented by the additive group of rational
numbers. It is not known if spectral synthesis holds on this group. Actually, this
group is not finitely generated, however, its torsion free rank is 1. If spectral
synthesis does not hold on the rationals, then the above conjecture is drastically
disproved: for Abelian groups with torsion free rank zero spectral synthesis holds,
as these are exactly the torsion groups. The next simplest case is obviously the
case of torsion free rank 1. On the other hand, if spectral synthesis holds on the
rational group, then this is the first example for a torsion free group where spectral
synthesis holds and the group is not finitely generated.

In addition to the above conjecture in [13] we proved the following theorem.

Theorem 5.2. The torsion free rank of any Abelian group is equal to the dimen-
sion of the linear space consisting of all complex additive functions of the group in
the sense that either both are finite and equal, or both are infinite.

Proof. Let G be an Abelian group and let let k = r0(G) 6 +∞. Then G has a
subgroup isomorphic to Zk. If k is infinite then this is equal to the non-complete
direct product of k copies of Z. We will identify this subgroup with Zk. Obviously
Zk has at least k linearly independent complex additive functions; for instance
we can take the projections onto the different factors of the product group. On
the other hand, by the above mentioned result in [3] any homomorphism of a
subgroup of an Abelian group into a divisible Abelian group can be extended to
a homomorphism of the whole group. As the additive group of complex numbers
is obviously divisible, the above mentioned linearly independent complex additive
functions of Zk can be extended to complex homomorphisms of the whole group G,
and the extensions are clearly linearly independent, too. Hence the dimension of
the linear space of all complex additive functions of G is not less then the torsion
free rank of G.

Now we suppose that k < +∞. Let Φ denote the natural homomorphism of G
onto the factor group with respect to Zk. As it is a torsion group, hence for each
element g of G there is a positive integer n such that

0 = nΦ(g) = Φ(ng) ,

thus ng belongs to the kernel of Φ, which is Zk. This means that there exist integers
m1,m2, . . . , mk such that

ng = (m1,m2, . . . , mk) .

Suppose now that there are k + 1 linearly independent complex additive functions
a1, a2, . . . , ak+1 on G. Then there exist elements g1, g2, . . . , gk+1 in G such that the
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(k + 1)× (k + 1) matrix
(
ai(gj)

)
is regular. For l = 1, 2, . . . , k we let el denote the

vector in Ck whose l-th coordinate is 1, the others are 0. By our above consideration
there are integers m

(j)
l , nj for l = 1, 2, . . . , k and j = 1, 2, . . . , k + 1 such that

njgj = (m(j)
1 ,m

(j)
2 , . . . , m

(j)
k ) .

Hence we have
ai(njgj) = ai(m

(j)
1 ,m

(j)
2 , . . . , m

(j)
k ) =

= m
(j)
1 ai(e1) + m

(j)
2 ai(e2) + · · ·+ m

(j)
k ai(ek) ,

and therefore

ai(gj) =
k∑

l=1

m
(j)
l

nj
ai(el)

holds for i, j = 1, 2, . . . , k+1. This means that the linearly independent columns of
the matrix

(
ai(gj)

)
are linear combinations of the columns of the matrix

(
ai(el)

)
for i = 1, 2, . . . , k + 1; l = 1, 2, . . . , k. But this is impossible, because the latter
matrix has only k columns, hence its rank is at most k.

We have shown that if the torsion free rank of G is the finite number k then
the dimension of the linear space consisting of all complex additive functions of G
is at most k, hence the theorem is proved. ¤

Another characterization of Abelian groups with finite torsion free rank is given
by the following result (see [13]).

Theorem 5.3. The torsion free rank of an Abelian group is finite if and only if any
complex bi-additive function is a bilinear function of complex additive functions.

Hence our conjecture has two more equivalent formulations:
- Spectral synthesis holds on an Abelian group if and only if there are only

finitely many linearly independent additive functions on the group.
- Spectral synthesis holds on an Abelian group if and only if any complex bi-

additive function is a bilinear function of complex additive functions.
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