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Abstract

Knot modification of B-spline curves is extensively studied in the past few
years. Altering one knot value, curve points move on well-defined paths, the
limit of which can be computed if the knot value tends to infinity. Symmetric
alteration of two knot values can also be studied in a similar way. The
extension of these limit theorems for general synchronized modification of
two knots is discussed in this paper.
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1. Introduction

B-spline curves and surfaces are well-known geometric modeling tools in com-
puter aided design. The definition of the kth order B-spline curve is as follows
(c.f.[13]):

Definition 1.1. The curve s (u) defined by

s (u) =
n∑

l=0

dlN
k
l (u) , u ∈ [uk−1, un+1]
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is called B-spline curve of order k 6 n (degree k−1), where the points dl are called
control points or de Boor-points, while Nk

l (u) is the kth normalized B-spline basis
function, given by the following recursive functions:

N1
j (u) =

{
1 if u ∈ [uj , uj+1) ,
0 otherwise

Nk
j (u) = u−uj

uj+k−1−uj
Nk−1

j (u) + uj+k−u
uj+k−uj+1

Nk−1
j+1 (u) .

The numbers uj 6 uj+1 ∈ R are called knot values or simply knots, and 0/0=̇0 by
definition.

In the last few years several papers dealt with knot modification of B-spline curves.
From a practical point of view, optimization techniques by changing the entire knot
vector have been studied in [1] and [3], while shape control algorithms for cubic
B-spline curves by changing three consecutive knots have been described in [10].

Basic theoretical results of alteration of a single knot value can be found in [8]
and [9], where the notion of path has been introduced for curves s (u, ui) obtained
by fixing the parameter value u and modifying the knot ui. In [8] the authors
proved that these paths are rational curves. In [5] these paths are extended in
a way that monotonicity of knot values was not fulfilled, i.e. we let ui < ui−1

and ui > ui+1. Here we emphasize that this extension is a pure mathematical
construction that is, the functions Nk

l (u) obtained by this substitution are not
basis functions any more. This extension, however can help us to examine the
limit properties of paths. These extended paths have been studied in [5] where the
following theorem has been proved:

Theorem 1.2. Modifying the single multiplicity knot ui of the B-spline curve s (u),
points of the extended paths of s (u) , u ∈ [ui−1, ui+1) tend to the control points di

and di−k as ui tends to −∞ and ∞, respectively, i.e.,

lim
ui→−∞

s (u, ui) = di, lim
ui→∞

s (u, ui) = di−k, ∀u ∈ [ui−1, ui+1) .

Some of the results of knot modification have been successfully extended for B-
spline surfaces as well (c.f. [4], [11]).

2. Alteration of two knots

Similarly to the previous section, one can modify two (not necessarily neigh-
boring) knots of s (u) as well. Let us denote the two altered knots by ui and ui+z,
((k − 1) < i < i + z < (n + 1)). If their modification is independent of each other,
the possible positions of each fixed point of the curve can be described as a planar
region. However if the modification of the two knots is synchronized in a way that
their movement depend on a single parameter, the points of the curve will move
on paths. In [6] the modification of type ui + λ and ui+z − λ has been discussed
and the following result has been proved.
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Theorem 2.1. Symmetrically altering the knots ui and ui+z (z ∈ {1, 2, . . . , k},
where k is the order of the original B-spline curve), extended paths of points of the
arcs sj, (j = i, i + 1, . . . , i + z − 1) converge to the midpoint of the segment bounded
by the control points di and di+z−k when λ → −∞, i.e.

lim
λ→−∞

s (u, λ) =
di + di+z−k

2
, u ∈ [ui, ui+z) . (2.1)

In this paper we extend this result for a more general movement of knots. Let the
modification of the two knots be described by the following way:

ui = ui + tλ

uj = uj − (1− t)λ,

where t ∈ [0, 1] is fixed and λ ∈ R is a running parameter. If one intend to preserve
the monotonicity of the knot values, only λ ∈ [−c, c], c = min{ui − ui−1, ui+1 −
ui, uj − uj−1, uj+1 − uj} is allowed, but in case of extended paths the parameter
can be any real number.

3. The limit theorem

For the synchronized motion described in the previous section the following
statement holds.

Theorem 3.1. Modifying the knots

ui = ui + tλ, ui+z = ui+z − (1− t)λ, (z = 1, 2, . . . , k) (3.1)

the points of the extended paths of s(u), u ∈ [ui, ui+z) tend to a point of the line
segment didi+z−k the barycentric coordinates of which are t and (1− t), i.e.

lim
λ→−∞

s (u, t, λ) = tdi + (1− t)di+z−k, u ∈ [ui, ui+z) , t ∈ [0, 1].

Proof. At first we prove that if u ∈ [ui, ui+z), then for z = 1, 2, ..., k − 1

lim
λ→−∞

Nk
i+z−k(u, t, λ) = (1− t)

lim
λ→−∞

Nk
i (u, t, λ) = t

lim
λ→−∞

Nk
j (u, t, λ) = 0, (j 6= i, i + z − k) ,

and for z = k

lim
λ→−∞

Nk
i (u, t, λ) = 1

lim
λ→−∞

Nk
j (u, t, λ) = 0, (j 6= i) .
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We prove the statement by induction on k. For the sake of simplicity the
variables of the basis functions are omitted.

i) k = 3
On the interval [ui, ui+1) the basis function is of the following form

N3
i =

u− ui

ui+2 − ui

u− ui

ui+1 − ui
.
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Figure 1: A cubic (k = 4) B-spline curve and its paths for various values of t,
(i = 6, z = 2).

Substituting equations (3.1) into this function the numerator as well as the
denominator will be quadratic in λ. The main coefficient of the numerator is t2

independently of z. For z = 1 the main coefficient in the denominator can be
calculated by applying

ui+2 − ui = ui+2 − (ui + tλ) = ui+2 − ui − tλ

ui+1 − ui = ui+1 − (1− t)λ− (ui + tλ) = ui+1 − ui − λ

which turn to be t, while for z = 2 applying

ui+2 − ui = ui+2 − (1− t)λ− (ui + tλ) = ui+2 − ui − λ
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ui+1 − ui = ui+1 − (ui + tλ) = ui+1 − ui − tλ

the main coefficient is t again. If z = 3, then due to ui = ui+tλ the main coefficient
is t2. Thus we obtain, that

lim
λ→−∞

N3
i =

{
t, if z = 1, 2
1, if z = 3 u ∈ [ui, ui+1) .

On the interval [ui, ui+1) the other two basis functions are of the form

N3
i−2 =

ui+1 − u

ui+1 − ui−1

ui+1 − u

ui+1 − ui

N3
i−1 =

u− ui−1

ui+1 − ui−1

ui+1 − u

ui+1 − ui
+

ui+2 − u

ui+2 − ui

u− ui

ui+1 − ui
.

Similar calculation leads to the main coefficients and to the limits of these two
functions, which are (1 − t) and 0 for z = 1, 0 and (1 − t) for z = 2 while 0 in
both cases for z = 3. For the rest of the indices (j 6= i− 2, i− 1, i) N3

j ≡ 0 always
holds. Thus the proof is ready for k = 3 on the interval [ui, ui+1). For the intervals
[ui+1, ui+2) and [ui+2, ui+3) the statement can be proved in an analogous way.

ii) Suppose that for ∀u ∈ [ui, ui+z)

lim
λ→−∞

Nk−1
i =

{
t, if z = 1, ..., k − 2
1, if z = k − 1 (3.2a)

lim
λ→−∞

Nk−1
i+z−k+1 =

{
(1− t), if z = 1, ..., k − 2
1, if z = k − 1 (3.2b)

lim
λ→−∞

Nk−1
j = 0, (j 6= i, i + z − k + 1) , if z = 1, ..., k − 1. (3.2c)

holds. At first we prove that the assumptions (3.2a)-(3.2c) yield

lim
λ→−∞

Nk
i =

{
t, if z = 1, ..., k − 1
1, if z = k

u ∈ [ui, ui+z) . (3.3)

By definition

Nk
i (u) =

u− ui

ui+k−1 − ui
Nk−1

i (u) +
ui+k − u

ui+k − ui+1
Nk−1

i+1 (u) .

Due to (3.2a) the limit of the first term is t if z ≤ k−2. If z = 1 then Nk−1
i+1 (u) ≡ 0,

thus the limit of the second term equals 0, while for z = 2, ..., k − 2 the limit also
equals 0 due to (3.2c). For z = k − 1 the limit of the fraction in the first term
equals t since

u− ui = u− ui − tλ

ui+k−1 − ui = ui+k−1 − λ + tλ− ui − tλ = ui+k−1 − ui − λ.
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But (3.2a) yields lim
λ→−∞

Nk−1
i = 1, thus the limit of the first term is t again. Taking

into account equation (3.2c) the limit of the second term is 0.
Finally, for z = k the proof is analogous to that of Theorem 1.2, thus we proved

(3.3).
Now applying (3.2a)-(3.2c) we verify

lim
λ→−∞

Nk
i+z−k =

{
(1− t), if z = 1, ..., k − 1
1, if z = k

u ∈ [ui, ui+z) . (3.4)

By definition

Nk
i+z−k (u) =

u− ui+z−k

ui+z−1 − ui+z−k
Nk−1

i+z−k (u) +
ui+z − u

ui+z − ui+z−k+1
Nk−1

i+z−k+1 (u) .

Due to (3.2c) the limit of the first term equals 0 for z ≤ k − 1. The limit
of the fraction in the second term is 1 for z = 1, ..., k − 2, while (3.2b) yields
lim

λ→−∞
Nk−1

i+z−k+1 (u) = (1− t). For z = k − 1 applying

ui+k−1 − u = ui+z − (1− t)λ− u

ui+k−1 − ui = ui+k−1 − λ + tλ− ui − tλ = ui+k−1 − ui − λ

the limit of the fraction in the second term equals (1 − t), while due to (3.2b)
lim

λ→−∞
Nk−1

i+z−k+1 (u) = 1. Thus the limit of the second term is always equal to

(1− t). The case z = k is analogous to the proof of Theorem 1.2 again, thus (3.4)
is verified.
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Figure 2: A quadric (k = 5) B-spline curve and its paths for t = 0.85, (i = 6, z = 4).

Finally, we prove that assuming (3.2a)-(3.2c)

lim
λ→−∞

Nk
j = 0, (j 6= i, i + z − k) ,∀z, u ∈ [ui, ui+z) (3.5)
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holds. By definition

Nk
j (u) =

u− uj

uj+k−1 − uj
Nk−1

j (u) +
uj+k − u

uj+k − uj+1
Nk−1

j+1 (u) .

The limit of the first term equals 0 (if j = i + z − k + 1 then j + k − 1 = i + z,
thus the limit of the fraction is 0, while for the other cases the limit of the basis
function in the first term is 0 due to (3.2c)). The limit of the second term equals
0 as well, (for j + 1 = i the limit of the fraction equals 0, while for the rest of the
cases (3.2c) yields lim

λ→−∞
Nk−1

j+1 (u) = 0). Thus (3.5) has also been verified and this

completes the proof. ¤

Figure 1 demonstrates the result for cubic curves, while Figure 2 shows an example
for a higher order curve.
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