Addendum and corrigenda to the paper "Infinitary superperfect numbers"

Tomohiro Yamada
Center for Japanese language and culture, Osaka University, 562-8558, 8-1-1, Aomatanihigashi, Minoo, Osaka, Japan tyamada1093@gmail.com

Submitted March 30, 2018 - Accepted June 13, 2018

Abstract

We shall give an elementary proof for Lemma 2.4 and correct some errors in Table 1 of the author's paper of the title. Moreover, we shall extend this table up to integers below 2^{32}. Keywords: Odd perfect numbers, infinitary superperfect numbers, unitary divisors, infinitary divisors, the sum of divisors

MSC: 11A05, 11A25
In p. 215, Lemma 2.4 of the author's paper "Infinitary superperfect numbers", this journal 47 (2017), 211-218, it is stated that, if $p^{2}+1=2 q^{m}$ with $m \geq 2$, then a) m must be a power of 2 and, b) for any given prime q, there exists at most one such m. Here the author owed the former to an old result of Størmer [5] that the equation $x^{2}+1=2 y^{m}$ with m odd has only one positive integer solution $(x, y)=(1,1)$ and the latter to Ljunggren's result [2] that the equation $x^{2}+1=2 y^{n}$ has only two positive integer solutions $(x, y)=(1,1)$ and $(239,13)$. However, Ljunggren's proof is quite difficult. Steiner and Tzanakis [3] gave a simpler proof, which uses lower bounds for linear forms in logarithms and is still analytic.

We note that the latter fact on $p^{2}+1=2 q^{m}$ mentioned above can be proved in a more elementary way. In his earlier paper [4], Størmer proved that, if x, y, A, t are positive integers such that $x^{2}+1=2 A, y^{2}+1=2 A^{2^{t}}$ and $x \pm y \equiv 0(\bmod A)$, then $(x, y, A, 1)=(3,7,5,2)$ or $(5,239,13,2)$. We can easily see that if A is prime and $x^{2}+1 \equiv y^{2}+1 \equiv 0(\bmod A)$, then we must have $x \pm y \equiv 0(\bmod A)$. Now the latter fact for $p^{2}+1=2 q^{m}$ mentioned above immediately follows. Moreover, the above-mentioned result for $x^{2}+1=2 y^{m}$ with m odd had also already been proved
in [4]. Hence, the above statement follows from results in [4]. The most advanced method used in [4] is classical arithmetic in Gaussian integers.

Moreover, we can prove the latter fact on $p^{2}+1=2 q^{m}$ in a completely elementary way. Applying Théorème 1 of Størmer [5] to $x^{2}-2 q^{2} y^{2}=-1$, we see that if $(x, y)=\left(x_{0}, y_{0}\right)$ is a solution of $x^{2}-2 q^{2} y^{2}=-1$ and y_{0} is a power of q, then $\left(x_{0}, y_{0}\right)$ must be the smallest solution of $x^{2}-2 q^{2} y^{2}=-1$. Hence, for any give prime $q, x^{2}+1=2 q^{2^{t}}$ can have at most one positive integer solution (x, t).

Anothor elementary way is to use a theorem of Carmichael [1] (a simpler proof is given by Yabuta [6]). Let $(x, y)=\left(x_{1}, y_{1}\right)$ be the smallest solution of $x^{2}-2 y^{2}=-1$ with y divisible by q. Carmichael's theorem applied to the Pell sequence implies that, if $(x, y)=\left(x_{2}, y_{2}\right)$ is another solution of $x^{2}-2 y^{2}=-1$ with y divisible by q, then y_{2} must have a prime factor other than q. Hence, y_{2} cannot be a power of q.

Corrigenda to p. 213, Table 1, the right row for N :

- The fifth column should be $856800=2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17$.
- The sixth column should be $1321920=2^{6} \cdot 3^{5} \cdot 5 \cdot 17$.
- The twelfth column should be $30844800=2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17$.
- Moreover, we extended our search limit to 2^{32} and found four more integers N dividing $\sigma_{\infty}\left(\sigma_{\infty}(N)\right)$:

N	k
$1304784000=2^{7} \cdot 3^{2} \cdot 5^{3} \cdot 13 \cdot 17 \cdot 41$	7
$1680459462=2^{9} \cdot 3^{3} \cdot 11 \cdot 43 \cdot 257$	5
$4201148160=2^{8} \cdot 3^{3} \cdot 5 \cdot 11 \cdot 43 \cdot 257$	6
$4210315200=2^{6} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17$	8

References

[1] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. of Math. Vol. 15(1) (1913-1914), 30-70.
https://doi.org/10.2307/1967797
[2] W. Ljungqren, Zur theorie der Gleichung $X^{2}+1=D Y^{4}$, Avh. Norske, Vid. Akad. Oslo Vol. 1, No. 5 (1942).
[3] Ray Steiner and Nikos Tzanakis, Simplifying the solution of Ljunggren's equation $X^{2}+1=2 Y^{4}$, J. Number Theory Vol. 37(2) (1991), 123-132. https://doi.org/10.1016/s0022-314x (05) 80029-0
[4] Carl Størmer, Solution compléte en nombres entiers m, n, x, y, k de l'équation $m \operatorname{arctg} \frac{1}{x}+n \operatorname{arctg} \frac{1}{y}=k \frac{\pi}{4}$, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1895), Nr. 11, 21 pages.
https://doi.org/10.24033/bsmf. 603
[5] Carl Størmer, Quelques théorèmes sur l'équation de Pell $x^{2}-D y^{2}= \pm 1$ et leurs applications, Skrift. Vidensk. Christiania I. Math. -naturv. Klasse (1897), Nr. 2, 48 pages.
[6] Minoru Yabuta, A simple proof of Carmichael's theorem on primitive divisors, Fibonacci Quart. Vol. 39(5) (2001), 439-443.

