Annales Mathematicae et Informaticae 49 (2018) pp. 85-100 DOI: 10.33039/ami.2018.08.001 http://ami.uni-eszterhazy.hu

Diophantine triples in a Lucas-Lehmer sequence

Krisztián Gueth

Lorand Eötvös University Savaria Department of Mathematics Károli Gáspár tér 4 9700 Szombathely Hungary guethk@gmail.com

Submitted October 19, 2017 — Accepted August 24, 2018

Abstract

In this paper, we define a Lucas-Lehmer type sequence denoted by $(L_n)_{n=0}^{\infty}$, and show that there are no integers 0 < a < b < c such that ab + 1, ac + 1and bc + 1 all are terms of the sequence.

Keywords: Diophantine triples, Lucas-Lehmer sequences

MSC: Primary 11B39; Secondary 11D99

1. Introduction

A diophantine *m*-tuple consists of *m* distinct positive integers such that the product of any two of them is one less than a square of an integer. Diophantus found the first four, but rational numbers 1/16, 33/16, 17/4, 105/16 with this property. Fermat gave 1, 3, 8, 120 as the first integer quadruple. Hoggatt and Bergum [8] provided infinitely many diophantine quadruples by F_{2k} , F_{2k+2} , F_{2k+4} , $4F_{2k+1}F_{2k+2}F_{2k+3}$. The most outstanding result is due to Dujella [3], who proved that there are only finitely many quintuples. Recently He, Togbe, and Ziegler submitted a work which solved the longstanding problem of the non-existence of diophantine quintuples [7].

There are several variations of the basic problem, most of them replace the squares by a given infinite set of integers. For instance, Luca and Szalay studied the diophantine triples for the terms of binary recurrences. They proved that there

are no integers 0 < a < b < c such that ab + 1, ac + 1 and bc + 1 all are Fibonacci numbers (see [9]), further for the Lucas sequence there is only one such a triple: a = 1, b = 2, c = 3 (see [10]). Fuchs, Luca and Szalay [4] gave sufficient and necessary conditions to have infinitly many diophantine triples for a general second order sequence.

For ternary recurrences Fuchs et al. [5] justified that there exist only finitely many triples corresponding to Tribonacci sequence. This paper was generalized by Fuchs et al. [6]. Alp and Irmak were the first who investigated the existence of diophantine triples in a Lucas-Lehmer type sequence (see [2]). They showed that there are no diophantine triples for the so-called pellans sequence.

In this paper, we study another Lucas-Lehmer sequence and prove the nonexistence of diophantine triples associated to it. Let $(L_n)_{n=0}^{\infty}$ be defined by the initial values $L_0 = 0$, $L_1 = 1$, $L_2 = 1$ and $L_3 = 3$, and by the recursive rule

$$L_n = 4L_{n-2} - L_{n-4}. (1.1)$$

Our principal result is the following.

Theorem 1.1. There exist no integers 0 < a < b < c such that

$$ab + 1 = L_x, \quad ac + 1 = L_y, \quad bc + 1 = L_z$$

$$(1.2)$$

would hold for any positive integers x, y and z.

2. Preliminaries

The associate sequence of (L_n) is denoted by $(M_n)_{n=0}^{\infty}$, which according to the general theory of Lucas-Lehmer sequences satisfies $M_0 = 2$, $M_1 = 2$, $M_2 = 4$, $M_3 = 10$, and $M_n = 4M_{n-2} - M_{n-4}$. It is easy to see that L_n is divisible by 4 if and only if $4 \mid n$, otherwise L_n is odd. Using the recurrence relation (1.1), for negative subscripts $M_{-n} = (-1)^n M_n$ follows.

The zeros of the common characteristic polynomial $x^4 - 4x^2 + 1$ of (L_n) and (M_n) are $\omega = (\sqrt{3} + 1)/\sqrt{2}$, $\psi = (-\sqrt{3} + 1)/\sqrt{2}$, $-\omega$ and $-\psi$, further the initial values provide the explicit formulae

$$L_n = \frac{1+\sqrt{2}}{4\sqrt{3}} \left(\omega^n - \psi^n\right) + \frac{1-\sqrt{2}}{4\sqrt{3}} \left((-\omega)^n - (-\psi)^n\right),$$

$$M_n = \frac{1+\sqrt{2}}{2} \left(\omega^n + \psi^n\right) + \frac{1-\sqrt{2}}{2} \left((-\omega)^n + (-\psi)^n\right).$$
(2.1)

It's trivial from the recursive rules of both (L_n) and (M_n) that the subsequences of terms with even resp. odd indices form second order sequences by the same coefficients. The zeros of their companion polynomial are $\alpha = \omega^2 = 2 + \sqrt{3}$ and $\beta = \psi^2 = 2 - \sqrt{3}$, and the dominant root is α .

Generally the Lucas-Lehmer sequences are union of two binary recursive sequences. Many properties, which are well known for binary sequences with initial values 0 and 1, hold for Lucas-Lehmer sequences too (may be by a little modification). So the research of Lucas-Lehmer sequences is a new feature in the investigations.

In the sequel, we prove a few lemma which will be useful in proving the main theorem.

Lemma 2.1. If n = mt and t is odd, then $M_m \mid M_n$.

Proof. The statement is obvious for t = 1. Formula (2.1) admits

$$M_{6k} = M_{2k}(M_{4k} - 1), (2.2)$$

$$M_{6k+3} = M_{2k+1}(M_{4k+2} + 1), (2.3)$$

which proves the lemma for t = 3. It can be seen by induction on k that

$$M_{n+k} = \begin{cases} \frac{1}{2}M_nM_k + M_{n-k}, & \text{if } n \equiv k \equiv 1 \pmod{2}, \\ M_nM_k - (-1)^kM_{n-k}, & \text{otherwise.} \end{cases}$$
(2.4)

Finally, using (2.4), we can prove the lemma by induction on t. \Box

Lemma 2.2. If n = mt and t is even, then $gcd(M_n, M_m) = 2$.

Proof. Put m = 2k. From (2.1) it follows that

$$M_{4k} = M_{2k}^2 - 2. (2.5)$$

Subsequently, $gcd(M_{2k}, M_{4k}) = 2$. It can be seen that $M_{2^{l}k}$ $(l \geq 3)$ can be expressed as a polynomial of M_{2k} , where the constant term is always 2. Thus $gcd(M_{2k}, M_{2^{l}k}) = 2$ $(l \geq 2)$.

Now let m = 2k + 1. Again by (2.1) we see that

$$M_{4k+2} = M_{2k+1}^2 / 2 + 2 \tag{2.6}$$

holds. Putting $H_{2k+1} = M_{2k+1}^2/2$, it is trivial that H_{2k+1} and M_{2k+1} are divisible by the same primes, and the exponent of 2 is 1 in both integers. So $gcd(H_{2k+1}, N) =$ 2 and $gcd(M_{2k+1}, N) = 2$ are equivalent for an arbitrary integer N. Hence we have $M_{4k+2} = H_{2k+1} + 2$, and it implies $gcd(M_{4k+2}, H_{2k+1}) = 2$. By induction and (2.5) we can see that $M_{2^l(2k+1)}$ can be written as a polynomial of H_{2k+1} for any positive integer l, with constant term 2. Consequently, $gcd(M_{2k+1}, M_{2^l(2k+1)}) =$ $gcd(H_{2k+1}, M_{2^l(2k+1)}) = 2$. Together with Lemma 2.1, it shows immediately, that $gcd(M_m, M_{tm}) = 2$ for arbitrary even t. \Box

Lemma 2.3. For any $n \ge 0$ we have

$$L_n - 1 = \begin{cases} L_{\frac{n-1}{2}} M_{\frac{n+1}{2}}, & \text{if } n \equiv 1 \pmod{4}, \\ L_{\frac{n+1}{2}} M_{\frac{n-1}{2}}, & \text{if } n \equiv 3 \pmod{4}, \\ \frac{1}{2} L_{\frac{n+2}{2}} M_{\frac{n-2}{2}}, & \text{if } n \equiv 0 \pmod{4}, \\ L_{\frac{n-2}{2}} M_{\frac{n+2}{2}}, & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$
(2.7)

Proof. To prove the statement one can use the explicit formulae for the terms appearing in (2.7).

Lemma 2.4. The greatest common divisors of the terms of (L_n) and (M_n) satisfy

1.
$$gcd(L_m, L_n) = L_{gcd(m,n)};$$

2.
$$\operatorname{gcd}(M_m, M_n) = \begin{cases} M_{\operatorname{gcd}(m,n)}, & \text{if } \frac{m}{\operatorname{gcd}(m,n)} \equiv 1 \equiv \frac{n}{\operatorname{gcd}(m,n)} \pmod{2}, \\ 2, & \text{otherwise;} \end{cases}$$

3. $\operatorname{gcd}(L_m, M_n) = \begin{cases} \mu M_{\operatorname{gcd}(m,n)}, & \text{if } \frac{m}{\operatorname{gcd}(m,n)} + 1 \equiv 1 \equiv \frac{n}{\operatorname{gcd}(m,n)} \pmod{2}, \\ 1 \text{ or } 2, & \text{otherwise}, \end{cases}$ where $\mu = 1 \text{ or } 1/2.$

Proof. We omit the proof of the first statement, the easiest part, and start by proving the second one. The main tool is a Euclidean-like algorithm. Assume that m = nq + r, where q is an odd integer, and $0 \le r < 2n$. By (2.4) we have

$$M_m = \mu M_{nq} M_r \pm M_{nq-r}.$$

The terms of (M_n) is even, so μM_r is an integer. Let d be an integer which divides both M_m and M_n . Since q is odd, d divides M_{nq} , too. Thus $d \mid M_{nq-r}$ holds. On the other hand, if $d \mid M_n$ and $d \mid M_{nq-r}$, then similarly d divides M_m . Hence $gcd(M_m, M_n) = gcd(M_n, M_{nq-r})$.

Suppose now m > n and $n \nmid m$. After the first Euclidean-like division by n, replace m by nq - r, and continue with this, while the subscript is larger than n. After the last step, nq - r might be negative. It is obvious that after two steps m is decreased by 4n. The last term of the sequence coming from these steps depends on the residue of the initial value of m modulo 4n. Let $r_1 \equiv m \pmod{n}$, $r_2 \equiv m \pmod{4n}$, and $0 < r_1 < n$, $0 < r_2 < 4n$. In particular, for the last subscript r' we found

$$r' = \begin{cases} r_1, & \text{if } 0 < r_2 < n, \\ n - r_1, & \text{if } n < r_2 < 2n, \\ -r_1, & \text{if } 2n < r_2 < 3n, \\ r_1 - n, & \text{if } 3n < r_2 < 4n \end{cases}$$

Obviously, $gcd(n, r_1) = gcd(n, r')$ and 0 < |r'| < n, further if $d_1 | m$ and $d_1 | n$, then $d_1 | nq - r$. Moreover if d_1 divides both n and nq - r, then it must divide r and m = nq + r. This shows that gcd(m, n) = gcd(nq - r, m). Thus gcd(m, n) = gcd(r', n). Then apply this approach successively (replace the initial values of m by n, and n by |r'|, and continue), and finish when the remainder is zero. The last nonzero remainder is the gcd.

To complete the proof of the second case, suppose that gcd(m, n) = 1. By the last division n = 1 follows, and denote the value of m by m_1 . The parities of m = nq + r and nq - r coincide in each step. If both m and n are odd, then the values of nq - r, r' are odd, hence so is m_1 . If m is even and n is odd, then r' is

even, and then the next division-sequence begins with odd m and even n. By the last division (where n = 1) it follows that m_1 must be even. Similarly, if the initial value of m is odd and n is even, then m_1 is even, too.

Put $d_2 = \gcd(m, n)$. It occurs if we multiply all the terms in the last paragraph by d_2 . If both m/d_2 and n/d_2 are odd, then the quotient in the last division (that is m_1) is odd, and by the algorithm and Lemma 2.1, we have $\gcd(M_m, M_n) = \gcd(M_{m_1d_2}, M_{d_2}) = M_{d_2}$. If exactly one of m/d_2 and n/d_2 is even, then the last quotient (m_1) is even, and $\gcd(M_m, M_n) = \gcd(M_{m_1d_2}, M_{d_2}) = 2$ follows by Lemma 2.2.

Now prove the third statement. The explicite formulae provide

$$2\mu L_{m+n} = L_n M_m + L_m M_n, (2.8)$$

$$2\mu M_{m+n} = 12L_n L_m + M_n M_m, (2.9)$$

where $\mu = 2$ if both m and n are odd, and $\mu = 1$ otherwise.

First we show that $gcd(L_k, M_k) = 2$ if 4 | k, and $gcd(L_k, M_k) = 1$ otherwise. It is clear for k = 1, 2, 3, 4. From (2.8) and (2.9) we obtain

$$L_{k+4} = \frac{1}{2}(L_k M_4 + L_4 M_k) = 7L_k + 2M_k,$$

$$M_{k+4} = \frac{1}{2}(12L_k L_4 + M_k M_4) = 24L_k + 7M_k.$$

By the Euclidean algorithm we have

$$gcd(L_{k+4}, M_{k+4}) = gcd(7L_k + 2M_k, 24L_k + 7M_k)$$

= gcd(7L_k + 2M_k, 3L_k + M_k)
= gcd(L_k, 3L_k + M_k) = gcd(L_k, M_k).

An induction implies the assertion for every k.

Now we show $gcd(M_{kn}, L_n) = 1$ or 2, again by induction for k. We have just seen that it is true for k = 1. Now (2.9) implies

$$2\mu M_{kn+n} = 12L_{kn}L_n + M_{kn}M_n.$$

Let d be an odd integer such that $d \mid M_{kn+n}$ and $d \mid L_n$. In this case $d \mid L_{kn}$, and we have shown that $gcd(L_{kn}, M_{kn}) \leq 2$, so d is relatively prime to M_{kn} . Thus $d \mid M_n$. Further $gcd(L_n, M_n) \leq 2$, and d is odd, so d = 1. If n is not divisible by 4, then L_n is odd, and $gcd(M_{kn+n}, L_n)$ is necessarily 1. If $4 \mid n$, then M_{kn+n} is not divisible by 4, but L_{kn+n} is even, so $gcd(M_{kn+n}, L_n) = 2$.

We will show that if k is odd, then $gcd(M_n, L_{kn}) = 1$ or 2. Clearly, it is true for k = 1. Suppose now that it holds for an odd k, and check it for k+2. It follows from (2.8) that

$$2\mu L_{kn+2n} = L_{kn}M_{2n} + M_{kn}L_{2n}.$$

Let be d an odd integer which divides both L_{kn+2n} and M_n . Then $d \mid M_{kn}$ holds since k is odd. But d is relatively prime to M_{2n} , so d must divide L_{kn} . We know that $gcd(L_{kn}, M_{kn}) \leq 2$, henceforward d = 1. If $4 \nmid n$, then odd k entails odd $L_{(k+2)n}$, and if $4 \mid n$, then $4 \nmid M_n$. Hence $gcd(M_n, L_{kn+2n})$ is 1 or 2.

Assuming k is even, put $k = 2^{t}t$, where t is odd. Then M_{n} divides M_{tn} , and we have $L_{2tn} = \mu L_{tn} M_{tn}$, where μ is 1 or 1/2. So $M_{tn}/2 \mid L_{2tn}$, and by induction, $M_{tn}/2$ divides $L_{2^{t}tn}$. Subsequently, $gcd(M_{n}, L_{kn})$ is M_{n} or $M_{n}/2$ for even k.

Thus the third statement is proven if one of n and m divides the other. For general m and n, suppose m > n, and let m = nq + r, where q is odd, 0 < r < 2n. From (2.8), $2\mu L_{nq+r} = L_{nq}M_r + M_{nq}L_r$ follows. It is easy to see that for any odd d the conditions $(d \mid L_m \text{ and } d \mid M_n)$, and $(d \mid M_n \text{ and } d \mid M_r)$ are equivalent (for odd q use that M_n divides M_{nq} and $gcd(M_{nq}, L_{nq})$ is 1 or 2). So it is enough to determine the greatest odd common divisior of M_n and M_r , for which we use the second part of this lemma.

Trivially, gcd(n, r) = gcd(n, m). Denote this value by c. If m/c is even and n/c is odd, then (because q is odd) r/c is odd (say this is case A). By the lemma, $gcd(M_n, M_r) = M_{gcd(n,r)}$. If m/c is odd and n/c is even, then r/c is odd. If both m/c and n/c are odd, then r/c is even. In these two cases (we call them case B) $gcd(M_n, M_r) = 2$ hold.

Clearly, M_n is not divisible by 8, moreover L_m and M_n are both divisible by 4 if and only if $4 \mid m$ and $n \equiv 2 \pmod{4}$. In this case the exponent of 2 in $\gcd(n,m)$ is 1, m/c is even, and n/c is odd (this is case A), and $M_{\gcd(n,m)}$ is divisible by 4. It is easy to see that $\gcd(L_m, M_n) = M_{\gcd(n,m)}$. In the remaining situations of case A, $M_{\gcd(m,n)}$ is not divisible by 4. Thus $\gcd(L_m, M_n)$ is $M_{\gcd(n,m)}$ or one half of it. In case B, 4 does not divide L_m and M_n at the same time, so their gcd is 1 or 2.

If m < n, then n = mp + r. Now p is not necessarily odd, therefore we can suppose 0 < r < m. Then from (2.9) we conclude $gcd(L_m, M_n) = gcd(L_m, M_r)$. To complete the proof we must use the previous case of this lemma.

The next lemma gives lower and upper bounds on the terms of (L_n) and (M_n) by powers of dominant root α .

Lemma 2.5. Suppose $n \ge 3$. We have

$$\alpha^{n-0.944} < L_{2n} < \alpha^{n-0.943}, \quad \alpha^{n-0.181} < L_{2n+1} < \alpha^{n-0.180}$$
$$\alpha^n < M_{2n} < \alpha^{n+0.001}, \quad \alpha^{n+0.763} < M_{2n+1} < \alpha^{n+0.764}.$$

Further, independently from the parity of the subscript k,

$$\alpha^{k/2-0.944} < L_k < \alpha^{k/2-0.680}$$
 and $\alpha^{k/2} < M_k < \alpha^{k/2+0.264}$

hold.

Proof. Let n_0 be a positive integer, and assume $n \ge n_0$. The explicit formula (2.1) simplifies $L_{2n} = (\alpha^n - \beta^n)/(\alpha - \beta)$, which yields

$$L_{2n} \ge \frac{\alpha^n - \beta^{n_0}}{\alpha - \beta} = \alpha^n \frac{1 - \left(\frac{\beta}{\alpha}\right)^{n_0} \alpha^{n_0 - n}}{\alpha - \beta} \ge \alpha^n \frac{1 - \left(\frac{\beta}{\alpha}\right)^{n_0}}{\alpha - \beta}.$$

Supposing $n_0 \ge 3$, together with $0 < \beta/\alpha < 1$ it leads to

$$\frac{1-(\frac{\beta}{\alpha})^{n_0}}{\alpha-\beta} \ge \frac{1-(\frac{\beta}{\alpha})^3}{\alpha-\beta} = 0.28856\ldots > \alpha^{-0.944}.$$

Thus $L_{2n} > \alpha^{n-0.944}$. To get an upper bound is easier, since $\beta > 0$ implies

$$L_{2n} = \frac{\alpha^n - \beta^n}{\alpha - \beta} < \frac{\alpha^n}{\alpha - \beta} = \alpha^n \frac{1}{2\sqrt{3}} < \alpha^{n - 0.943}.$$

For odd subscripts a similar treatment is available by

$$L_{2n+1} = \frac{1}{\alpha - \beta} \left[(\sqrt{3} + 1)\alpha^n + (\sqrt{3} - 1)\beta^n \right].$$

First we see

$$L_{2n+1} > \frac{1+\sqrt{3}}{2\sqrt{3}}\alpha^n > \alpha^{n-0.181}.$$

Now assume $n \ge n_0 \ge 3$. Consequently,

$$L_{2n+1} \leq \frac{1}{\alpha - \beta} \left[(\sqrt{3} + 1)\alpha^n + (\sqrt{3} - 1)\beta^{n_0} \right]$$

= $\alpha^n \left[\frac{\sqrt{3} + 1}{2\sqrt{3}} + \frac{\sqrt{3} - 1}{2\sqrt{3}} \left(\frac{\beta}{\alpha} \right)^{n_0} \alpha^{n_0 - n} \right]$
 $\leq \alpha^n \left[\frac{\sqrt{3} + 1}{2\sqrt{3}} + \frac{\sqrt{3} - 1}{2\sqrt{3}} \left(\frac{\beta}{\alpha} \right)^3 \right] = \alpha^n \cdot 0.788753 \dots < \alpha^{n - 0.180}.$

The bounds for the terms M_n can be shown by an analogous way.

Lemma 2.6. Suppose that a, b, z, and the fractions appearing below are integers. Then

- 1. if $3a \neq b$, then $gcd(\frac{z+a}{2}, \frac{3z+b}{8}) \leq \left|\frac{3a-b}{2}\right|$, 2. if $2a \neq b$, then $gcd(\frac{z+a}{2}, \frac{2z+b}{6}) \leq \left|\frac{2a-b}{2}\right|$,
- 3. if $a \neq b$, then $gcd(\frac{z+a}{2}, \frac{z+b}{4}) \leq \left|\frac{a-b}{2}\right|$.

Proof. The statements follow by a simple use of the Euclidean algorithm. \Box

Lemma 2.7. Supposing $z \ge 4$, the following properties are valid.

- 1. If $z \equiv 1 \pmod{4}$, then $M_{\frac{z-1}{2}}^2 < 2L_z$, further $3L_{\frac{z-1}{2}}^2 < 2L_z$.
- 2. If $z \equiv 3 \pmod{4}$, then $M_{\frac{z-1}{2}}^2 < 4L_z$.
- 3. If $z \equiv 2 \pmod{4}$, then $M_{\frac{z-2}{2}}^2 < 2L_z$.

4. If $z \equiv 0 \pmod{4}$, then $M_{\frac{z-2}{2}}^2 < 4L_z$.

Proof. Use (2.5), (2.6), and

$$M_n = \begin{cases} L_{n-1} + L_{n+1}, & \text{if } n \text{ is even,} \\ 2(L_{n-1} + L_{n+1}), & \text{if } n \text{ is odd.} \end{cases}$$
(2.10)

Here (2.10) can be proven by induction.

Lemma 2.8. Suppose that a and b are positive real numbers and u_0 is a positive integer. Let $\kappa = \log_{\alpha}(a + \frac{b}{\alpha^{u_0}})$. If $u \ge u_0$, then

$$a\alpha^u + b \le \alpha^{u+\kappa}.$$

Proof. This is obvious by an easy calculation.

3. Proof of Theorem 1.1

The conditions $1 \le a < b < c$ entail $3 \le x < y < z$. Obviously, $c \mid L_y - 1$ and $c \mid L_z - 1$. Thus $c \le \gcd(L_y - 1, L_z - 1)$. Clearly, $L_z = bc + 1 < c^2$, which implies $\sqrt{L_z} < c$. Combining this with Lemma 2.5, we see

$$\alpha^{\frac{z}{4} - 0.472} = \alpha^{\frac{1}{2} \left(\frac{z}{2} - 0.944\right)} < \sqrt{L_z} < c < L_y < \alpha^{\frac{y}{2} - 0.680},$$

and then z/4 - 0.472 < y/2 - 0.680 yields z < 2y - 0.832. Hence $z \le 2y - 1$.

Now we distinguish two cases.

Case I: $z \ge 117$.

The key point of this case is to estimate $G = \text{gcd}(L_y - 1, L_z - 1)$. Assume that $i, j \in \{\pm 1, \pm 2\}$, and $\mu_i^*, \mu_j^* \in \{1, 1/2\}$. By Lemma 2.3,

$$\begin{split} G &= \gcd(\mu_i^* L_{\frac{y-i}{2}} M_{\frac{y+i}{2}}, \mu_j^* L_{\frac{z-j}{2}} M_{\frac{z+j}{2}}) \\ &\leq \gcd(L_{\frac{y-i}{2}} M_{\frac{y+i}{2}}, L_{\frac{z-j}{2}} M_{\frac{z+j}{2}}) \\ &\leq \gcd(L_{\frac{y-i}{2}}, L_{\frac{z-j}{2}}) \gcd(L_{\frac{y-i}{2}}, M_{\frac{z+j}{2}}) \gcd(M_{\frac{y+i}{2}}, L_{\frac{z-j}{2}}) \gcd(M_{\frac{y+i}{2}}, M_{\frac{z+j}{2}}). \end{split}$$

Let Q denote the last product. By Lemma 2.4

$$Q \leq L_{\gcd(\frac{y-i}{2},\frac{z-j}{2})}M_{\gcd(\frac{y-i}{2},\frac{z+j}{2})}M_{\gcd(\frac{y+i}{2},\frac{z-j}{2})}M_{\gcd(\frac{y+i}{2},\frac{z-j}{2})}$$

follows. We define d_1, d_2, d_3, d_4 according to the relations

$$\gcd\left(\frac{y-i}{2}, \frac{z-j}{2}\right) = \frac{z-j}{2d_1}, \quad \gcd\left(\frac{y-i}{2}, \frac{z+j}{2}\right) = \frac{z+j}{2d_2},$$
$$\gcd\left(\frac{y+i}{2}, \frac{z-j}{2}\right) = \frac{z-j}{2d_3}, \quad \gcd\left(\frac{y+i}{2}, \frac{z+j}{2}\right) = \frac{z+j}{2d_4}.$$

Let $d = \min\{d_1, d_2, d_3, d_4\}.$

First suppose $d \ge 5$. Now Lemma 2.5, together with $|i|, |j| \le 2$ implies

$$\begin{aligned} \alpha^{\frac{z}{4} - 0.472} &< Q \le L_{\frac{z-j}{2d}} M_{\frac{z+j}{2d}} M_{\frac{z-j}{2d}} M_{\frac{z+j}{2d}} \le L_{\frac{z-j}{10}} M_{\frac{z+j}{10}} M_{\frac{z-j}{10}} M_{\frac{z+j}{10}} \\ &< \alpha^{\frac{z+2}{20} - 0.680} \left(\alpha^{\frac{z+2}{20} + 0.264} \right)^3 = \alpha^{\frac{z+2}{5} + 0.112}. \end{aligned}$$

But z/4 - 0.472 < (z+2)/5 + 0.112 contradicting $z \ge 117$.

Now let d = 4, that is one of d_1, d_2, d_3, d_4 equals 4. Assume that $\eta_1, \eta_2 \in \{\pm 1\}$. Then $|\eta_1 j|, |\eta_2 i| \leq 2$, and we can assume $z + \eta_1 j \geq y + \eta_2 i$. Contrary, if it does not hold, then by the definition of d the inequality $5/4(z-2) \leq y+2$ is true, which together with z > y implies $5z \leq 4y + 18 < 5y + 18$. So z < 18, which is not the case. Now we have only two possibilities:

$$\frac{z+\eta_1 j}{8} = \frac{y+\eta_2 i}{2} \quad \text{or} \quad \frac{z+\eta_1 j}{8} = \frac{y+\eta_2 i}{6}$$

In the first case we have $z = 4y + (4\eta_2 i - \eta_1 j) \ge 4y - 10$, and by $z \le 2y - 1$ we get $4y - 10 \le 2y - 1$, which implies $y \le 4$, and then $z \le 7$, a contradiction.

In the second case let $\eta'_1, \eta'_2 \in \{\pm 1\}$, such that $(\eta'_1, \eta'_2) \neq (\eta_1, \eta_2)$. Clearly,

$$y = \frac{3z + 3\eta_1 j - 4\eta_2 i}{4}$$
, and $\frac{y + \eta'_2 i}{2} = \frac{3z + 3\eta_1 j + 4(\eta'_2 - \eta_2)i}{8}$

Put $t = 4(\eta'_2 - \eta_2)$. Thus t = 0 or ± 8 . Applying the first assertion of Lemma 2.6 with $a = \eta'_1 j$ and $b = 3\eta_1 j + ti$, it gives

$$\gcd\left(\frac{z+\eta_{1}'j}{2},\frac{y+\eta_{2}'i}{2}\right) = \gcd\left(\frac{z+\eta_{1}'j}{2},\frac{3z+3\eta_{1}j+ti}{8}\right) \le \left|\frac{3\eta_{1}'j-3\eta_{1}j-ti}{2}\right|,$$

which does not exceed 14. This conclusion is correct if $3a - b \neq 0$, that is if $3\eta'_1 - 3\eta_1 j - ti \neq 0$. If 3a - b = 0, then $3 \mid t$, and then t = 0. Thus η'_1 must be equal to η_1 , so $(\eta'_1, \eta'_2) = (\eta_1, \eta_2)$, which has been excluded. Subsequently, three of the four factors of Q is at most M_{14} ($M_n \geq L_n$ for any index n) and the fourth factor is $L_{z\pm j}$ or $M_{z\pm j}$, none of them exceeding $M_{z\pm 2}$. So

$$Q \le M_{14}^3 M_{\frac{z+2}{8}} = 10084^3 M_{\frac{z+2}{8}},$$

and then, by Lemma 2.5, we have

$$\alpha^{\frac{z}{4} - 0.472} < Q < \alpha^{21.003} \alpha^{\frac{z+2}{16} + 0.264}.$$

Now we conclude z < 116.7, and it is a contradiction with $z \ge 117$.

Suppose d = 3. We have the two possibilities

$$\frac{z+\eta_1 j}{6} = \frac{y+\eta_2 i}{2}$$
 and $\frac{z+\eta_1 j}{6} = \frac{y+\eta_2 i}{4}$.

In the first case $2y - 1 \ge z = 3(y + \eta_2 i) - \eta_1 j \ge 3y - 8$ implies $y \le 7$, and then $z \le 13$, which is impossible.

In the second case we repeat the treatment of case d = 4, the variables η'_1 and η'_2 satisfy the same conditions. Now $y = (2z + 2\eta_1 j - 3\eta_2 i)/3$ provides

$$\frac{y+\eta_2'i}{2} = \frac{2z+2\eta_1j-3\eta_2i+3\eta_2'i}{6} = \frac{2z+2\eta_1j+3(\eta_2'-\eta_2)i}{6}$$

Let be $t = 3(\eta'_2 - \eta_2)$ with value 0 or ± 6 . Use the second assertion of Lemma 2.6 with $a = \eta'_1 j$, $b = 2\eta_1 j + ti$. If $2a - b \neq 0$ then

$$\gcd\left(\frac{z+\eta_{1}'j}{2},\frac{y+\eta_{2}'i}{2}\right) = \gcd\left(\frac{z+\eta_{1}'j}{2},\frac{2z+2\eta_{1}j+ti}{6}\right) \le \left|\frac{2\eta_{1}'j-2\eta_{1}j-ti}{2}\right|,$$

which is less then or equal to 10. If 2a - b = 0, that is if $2\eta'_1 j - 2\eta_1 j - ti = 0$, then $3 \mid t$ and $j \nmid t$ show $3 \mid \eta'_1 - \eta_1$, which can hold only if $\eta'_1 = \eta_1$. But in this case t must be zero, too. So $(\eta_1, \eta'_2) = (\eta_1, \eta_2)$, which is not allowed. We have

$$\alpha^{\frac{z}{4}-0.472} < Q \le M_{10}^3 M_{\frac{z+2}{6}} < 724^3 \alpha^{\frac{z+2}{12}+0.264}$$

by using Lemma 2.5. This implies z < 96, again a contradiction.

Now suppose d = 2. The only possibility is

$$\frac{z+\eta_1 j}{4} = \frac{y+\eta_2 i}{2}.$$

 $(\eta_1^{'} \text{ and } \eta_2^{'} \text{ are the same as in the previous cases.})$ It leads to $y = (z + \eta_1 j - 2\eta_2 i)/2$, and then to

$$\frac{y+\eta_{2}i}{2} = \frac{z+\eta_{1}j-2\eta_{2}i+2\eta_{2}i}{4} = \frac{z+\eta_{1}j+ti}{4},$$

where $t = 2(\eta'_2 - \eta_2) \in \{0, \pm 4\}$. Let $a = \eta'_1 j$, $b = \eta_1 j + ti$. If $a \neq b$, then by the third assertion of Lemma 2.6 we have

$$\gcd\left(\frac{z+\eta_{1}'j}{2},\frac{y+\eta_{2}'i}{2}\right) = \gcd\left(\frac{z+\eta_{1}'j}{2},\frac{z+\eta_{1}j+ti}{4}\right) \le \left|\frac{\eta_{1}'j-\eta_{1}j-ti}{2}\right| \le 6.$$

Thus

$$\alpha^{\frac{z}{4}-0.472} < Q \le M_6^3 M_{\frac{z+2}{4}} < \alpha^{9.003} \alpha^{\frac{z+2}{8}+0.264}$$

and we arrived at a contradiction via z < 80. If a - b = 0, then $(\eta'_1 - \eta_1)j = ti$. Now, if $j = \pm 1$, then (because t is divisible by 4) 4 | $\eta'_1 - \eta_1$ must hold. This occurs only if $\eta'_1 = \eta_1$, hence t = 0, so $\eta'_2 = \eta_2$, which has been excluded. Thus we may suppose $j = \pm 2$ and $\eta'_1 \neq \eta_1$. In this case $\eta'_1 - \eta_1 = \pm 2$, and $i = \pm 1$. The factors of Q belong to $(-\eta_1, \eta_2)$ and $(\eta_1, -\eta_2)$ can be estimated by M_6 . If $(\eta_1, \eta_2) = (1, 1)$, then this factor is $gcd(M_{\frac{y+i}{2}}, M_{\frac{z+j}{2}})$, which is 2 via (z + j)/4 = (y + i)/2 and Lemma 2.4. If $(\eta_1, \eta_2) = (1, -1)$, then similarly $gcd(L_{\frac{y-i}{2}}, M_{\frac{z+j}{2}}) \leq 2$. In this two cases we have

$$\alpha^{\frac{z}{4} - 0.472} < Q \le 2M_6^2 M_{\frac{z+2}{4}} < \alpha^{6.527} \alpha^{\frac{z+2}{8} + 0.264},$$

and then $z \leq 60$, a contradiction.

Let $(\eta_1, \eta_2) = (-1, -1)$ or (-1, 1). From $(z + \eta_1 j)/4 = (y + \eta_2 i)/2$ and |j| = 2, |i| = 1 it is easy to see that $(z - \eta_1 j)/2 = 2(y - \eta_2 i)/2$ or $(z - \eta_1 j)/2 = 2(y - \eta_2 i)/2 \pm 4$. If the first case holds, then $gcd((z - \eta_1 j)/2, (y - \eta_2 i)/2) = (z - \eta_1 j)/4$. Further if $(\eta_1, \eta_2) = (-1, -1)$, then the factor of Q belonging to $(-\eta_1, -\eta_2)$ is $gcd(M_{\frac{y+i}{2}}, M_{\frac{z+j}{2}}) = 2$ (by Lemma 2.4). If $(\eta_1, \eta_2) = (-1, 1)$, then the factor $gcd(L_{\frac{y-i}{2}}, M_{\frac{z+j}{2}}) = 1$ or 2. If $(z - \eta_1 j)/2 = 2(y - \eta_2 i)/2 \pm 4$ holds, it can be seen by the Euclidean algorithm that $gcd((z - \eta_1 j)/2, (y - \eta_2 i)/2) \le 4$, and the factor of Q is at most $M_4 = 14$. So in these cases we conclude

$$\alpha^{\frac{z}{4}-0.472} < Q \le M_4 M_6^2 M_{\frac{z+2}{4}} < \alpha^{8.005} \alpha^{\frac{z+2}{8}+0.264},$$

and this implies z < 72.

Assume d = 1. Now

$$\frac{z+\eta_1 j}{2} = \frac{y+\eta_2 i}{2},$$

where $\eta_1, \eta_2 = \pm 1$, and it reduces to $z \pm j = y \pm i$ with $i, j \in \{\pm 1, \pm 2\}$ According to Lemma 2.3 the values depend of the residue y and z modulo 4. Altogether, it means that we need to verify 16 cases.

1. $y \equiv z \equiv 1 \pmod{4}$. Clearly, now i = j = 1, so $z \pm 1 = y \pm 1$. The condition $y \equiv z \pmod{4}$ leads immediately to y = z, a contradiction.

2. $y \equiv 1$, $z \equiv 2 \pmod{4}$. Now i = 1, j = 2. Thus $z \pm 2 = y \pm 1$, and then $z = y \pm 3$ or $z = y \pm 1$. Considering them modulo 4, the only possibility is z = y + 1. By Lemma 2.3, we conclude

$$L_y - 1 = L_{\frac{y-1}{2}} M_{\frac{y+1}{2}} = L_{\frac{z-2}{2}} M_{\frac{z}{2}}, \text{ and } L_z - 1 = L_{\frac{z-2}{2}} M_{\frac{z+2}{2}}.$$

The common factor $L_{\frac{z-2}{2}}$ together with $gcd(M_{\frac{z}{2}}, M_{\frac{z+2}{2}}) = 2$ and by Lemma 2.5 provides a contradiction again, since

$$\alpha^{\frac{z}{4}-0.472} < \gcd(L_y - 1, L_z - 1) = 2L_{\frac{z-2}{2}} < \alpha^{0.527} \alpha^{\frac{z-2}{4}-0.680} = \alpha^{\frac{z}{4}-0.653}.$$

3. $y \equiv 1$, $z \equiv 3 \pmod{4}$. Here i = 1, j = -1, and the only possibility is z = y + 2. It follows that

$$L_y - 1 = L_{\frac{y-1}{2}} M_{\frac{y+1}{2}} = L_{\frac{z-3}{2}} M_{\frac{z-1}{2}}, \quad L_z - 1 = L_{\frac{z+1}{2}} M_{\frac{z-1}{2}},$$

where $gcd(L_{\frac{z+1}{2}}, L_{\frac{z-3}{2}}) = 1$. Now

$$c|\gcd(L_y-1,L_z-1) = M_{\frac{z-1}{2}} = c_1c > c_1\sqrt{L_z}$$

holds with an appropriate integer c_1 . By Lemma 2.7, $M_{\frac{z-1}{2}} < 2\sqrt{L_z}$. So we have $c_1\sqrt{L_z} < M_{\frac{z-1}{2}} < 2\sqrt{L_z}$, which implies $c_1 < 2$, i.e. $c_1 = 1$. Thus $c = M_{\frac{z-1}{2}}$, and we can see from the factorization of $L_y - 1$ and $L_z - 1$ that $a = L_{\frac{z-3}{2}}$, $b = L_{\frac{z+1}{2}}$. Lemma 2.5 shows

$$\alpha^{\frac{x}{2}-0.680} > L_x = ab + 1 = L_{\frac{z-3}{2}}L_{\frac{z+1}{2}} + 1 > L_{\frac{z-3}{2}}L_{\frac{z+1}{2}} > \alpha^{\frac{z-3}{4}-0.944}\alpha^{\frac{z+1}{4}-0.944}$$

Clearly, x > z - 3.416, and then $x \ge z - 3$. In our case x < y = z - 2 holds, so x = z - 3. This implies $L_{z-3} - 1 = L_x - 1 = L_{\frac{z-3}{2}} L_{\frac{z+1}{2}}$, which entails $L_{\frac{z-3}{2}} \mid L_{z-3} - 1$. Combining it with $L_{\frac{z-3}{2}} \mid L_{z-3}$, we have $L_{\frac{z-3}{2}} = 1$, and z is too small.

4. $y \equiv 1, z \equiv 0 \pmod{4}$. In this case z = y + 3, and

$$L_y - 1 = L_{\frac{y-1}{2}} M_{\frac{y+1}{2}} = L_{\frac{z-4}{2}} M_{\frac{z-2}{2}}, \quad L_z - 1 = \frac{1}{2} L_{\frac{z+2}{2}} M_{\frac{z-2}{2}}$$

The distance of the subscripts of the appropriate terms of (L_n) is 3, so $\gcd(L_{\frac{z-4}{2}}, \frac{1}{2}L_{\frac{z+2}{2}}) \leq \gcd(L_{\frac{z-4}{2}}, L_{\frac{z+2}{2}}) = 1$ or 3. So $\gcd(L_y - 1, L_z - 1) \mid 3M_{\frac{z-2}{2}}$. Therefore there exist a positive integer c_1 such that

$$c \mid \gcd(L_y - 1, L_z - 1) \mid 3M_{\frac{z-2}{2}} = c_1 c > c_1 \sqrt{L_z}.$$

Lemma 2.7 implies $M_{\frac{z-2}{2}} < 2\sqrt{L_z}$, and so $6\sqrt{L_z} > 3M_{\frac{z-2}{2}} > c_1\sqrt{L_z}$ hold. Thus $c_1 < 6$. Since $L_{\frac{z+2}{2}}$ is odd, $M_{\frac{z-2}{2}}$ does not divide $L_z - 1$. So we have $gcd(L_y - 1, L_z - 1) = \lambda M_{\frac{z-2}{2}}/2$, where $\lambda = 1$ or 3.

When $\lambda = 1$, c divides $M_{\frac{z-2}{2}}/2 = 3M_{\frac{z-2}{2}}/6$, which implies $c_1 \ge 6$, a contradiction.

Assuming $\lambda = 3$, it yields $c \mid 3M_{\frac{z-2}{2}}/2$. Thus either $c = 3M_{\frac{z-2}{2}}/2$ $(c_1 = 2)$ or $c = 3M_{\frac{z-2}{2}}/4$ $(c_1 = 4)$ holds. We can exclude the second case, because (z - 2)/2 is odd, and so $M_{\frac{z-2}{2}}$ is not divisible by 4. In the first case $b = L_{\frac{z+2}{2}}/3$ and $a = 2L_{\frac{z-4}{2}}/3$ follow from

$$bc = L_z - 1 = \frac{1}{2}M_{\frac{z-2}{2}}L_{\frac{z+2}{2}}$$
 and $ac = L_y - 1 = M_{\frac{z-2}{2}}L_{\frac{z-4}{2}}$,

respectively.

Using the fact that $L_{2k-2}L_{2k+1} + 1 = L_{2k-1}L_{2k}$ holds for every positive integer k (this comes from the explicit formula (2.1)), we can write

$$L_x = ab + 1 = \frac{2}{9}L_{\frac{z-4}{2}}L_{\frac{z+2}{2}} + 1 = \frac{2}{9}(L_{\frac{z-2}{2}}L_{\frac{z}{2}} - 1) + 1 = \frac{2}{9}L_{\frac{z-2}{2}}L_{\frac{z}{2}} + \frac{7}{9}.$$

By Lemma 2.5 we obtain

$$\alpha^{\frac{x}{2}-0.680} > L_x = \frac{2}{9}L_{\frac{z-2}{2}}L_{\frac{z}{2}} + \frac{7}{9} > \frac{2}{9}L_{\frac{z-2}{2}}L_{\frac{z}{2}} > \alpha^{-1.143}\alpha^{\frac{z-2}{4}-0.681}\alpha^{\frac{z}{4}-0.944}$$

(since (z-2)/2 is odd). It implies x > z - 5.176, so $x \ge z - 5$ holds.

We will reach the contradiction by showing $ab + 1 < L_{z-5}$. Knowing that z is even, $L_{z-5} > \alpha^{\frac{z-5}{2}-0.681} = \alpha^{\frac{z}{2}-3.181}$ follows from Lemma 2.5. Since

$$L_{\frac{z-2}{2}}L_{\frac{z}{2}} > \alpha^{\frac{z-4}{2} - 0.681} \alpha^{\frac{z}{4} - 0.944} = \alpha^{\frac{z}{2} - 2.125}$$

and $z \ge 16$, the exponent of α is at least 5.875. Applying Lemma 2.8 with $u_0 = 5$, we have $\kappa = \log_{\alpha}((2 + 7\alpha^{-5})/9) < -1.138$, and then

$$ab+1 = \frac{2}{9}L_{\frac{z-2}{2}}L_{\frac{z}{2}} + \frac{7}{9} < \alpha^{-1.138}\alpha^{\frac{z-2}{4} - 0.68}\alpha^{\frac{z}{4} - 0.943} = \alpha^{\frac{z}{2} - 3.261}$$

From these inequalities

$$L_{z-5} > \alpha^{\frac{z}{2} - 3.181} > \alpha^{\frac{z}{2} - 3.261} > ab + 1$$

follows, and the proof of this part is complete.

5. $y \equiv 2$, $z \equiv 1 \pmod{4}$. Now z = y + 3, further

$$L_y - 1 = L_{\frac{y-2}{2}} M_{\frac{y+2}{2}} = L_{\frac{z-5}{2}} M_{\frac{z-1}{2}}, \quad L_z - 1 = L_{\frac{z-1}{2}} M_{\frac{z+1}{2}}.$$

It is easy to see from Lemma 2.4 that $gcd(L_{\frac{z-5}{2}}, L_{\frac{z-1}{2}}) = 1, gcd(M_{\frac{z+1}{2}}, M_{\frac{z-1}{2}}) = 2, gcd(L_{\frac{z-5}{2}}, M_{\frac{z+1}{2}}) \le M_3 = 10, gcd(M_{\frac{z-1}{2}}, L_{\frac{z-1}{2}}) \le 2.$ Consequently,

$$\alpha^{\frac{z}{4}-0.472} < \gcd(L_y - 1, L_z - 1) \le 40 < \alpha^{2.802},$$

and then z < 14, a contradiction again.

6. $y \equiv z \equiv 2 \pmod{4}$. In this case i = j = 2. Then z = y + 4 follows. The identities

$$L_y - 1 = L_{\frac{y-2}{2}} M_{\frac{y+2}{2}} = L_{\frac{z-6}{2}} M_{\frac{z-2}{2}}, \quad L_z - 1 = L_{\frac{z-2}{2}} M_{\frac{z+2}{2}}$$

and $gcd(L_{\frac{z-6}{2}}, L_{\frac{z-2}{2}}) = 1$, $gcd(M_{\frac{z-2}{2}}, M_{\frac{z+2}{2}}) = 2$ (because both terms cannot be divisible by 4), $gcd(L_{\frac{z-6}{2}}, M_{\frac{z+2}{2}}) \leq M_4 = 14$, $gcd(M_{\frac{z-2}{2}}, L_{\frac{z-2}{2}}) \leq 2$ (see Lemma 2.4) induce

$$\alpha^{\frac{z}{4}-0.472} < \gcd(L_y - 1, L_z - 1) \le 56 < \alpha^{3.057},$$

which gives z < 15.

7. $y \equiv 2$, $z \equiv 3 \pmod{4}$. Here z = y + 1, moreover we have

$$L_y - 1 = L_{\frac{y-2}{2}} M_{\frac{y+2}{2}} = L_{\frac{z-3}{2}} M_{\frac{z+1}{2}}, \quad L_z - 1 = L_{\frac{z+1}{2}} M_{\frac{z-1}{2}}.$$

Again by Lemma 2.4,

$$\begin{aligned} &\gcd(L_{\frac{z-3}{2}},L_{\frac{z+1}{2}}) = 1, \quad \gcd(M_{\frac{z+1}{2}},M_{\frac{z-1}{2}}) = 2, \\ &\gcd(L_{\frac{z-3}{2}},M_{\frac{z-1}{2}}) \leq 2, \quad \gcd(M_{\frac{z+1}{2}},L_{\frac{z+1}{2}}) \leq 2. \end{aligned}$$

Thus

$$\alpha^{\frac{z}{4}-0.472} < \gcd(L_y - 1, L_z - 1) \le 8 < \alpha^{1.579}$$

follows, which implies z < 9.

8. $y \equiv 2$, $z \equiv 0 \pmod{4}$. Now i = 2, j = -2, and $y \pm 2 = j \mp 2$ cannot hold modulo 4.

9. $y \equiv 3$, $z \equiv 1 \pmod{4}$. In this case the only possibility is z = y + 2. Obviously,

$$L_y - 1 = L_{\frac{y+1}{2}} M_{\frac{y-1}{2}} = L_{\frac{z-1}{2}} M_{\frac{z-3}{2}}, \quad L_z - 1 = L_{\frac{z-1}{2}} M_{\frac{z+1}{2}}$$

hold. Beside the common factor, we get $gcd(M_{\frac{z-3}{2}}, M_{\frac{z+1}{2}}) = 2$ (because the subscripts are odd). Hence $gcd(L_y - 1, L_z - 1) = 2L_{\frac{z-1}{2}}$, further we see

$$c | \gcd(L_y - 1, L_z - 1) = 2L_{\frac{z-1}{2}} = c_1 c > c_1 \sqrt{L_z}$$

with an appropriate c_1 . By the second assertion of case (1) in Lemma 2.7, $\sqrt{L_z} > \sqrt{3/2}L_{\frac{z-1}{2}}$, subsequently

$$2L_{\frac{z-1}{2}} > c_1 \sqrt{L_z} > c_1 \sqrt{\frac{3}{2}} L_{\frac{z-1}{2}}$$

holds, providing $c_1 < \frac{2\sqrt{2}}{\sqrt{3}} < 2$. So only $c_1 = 1$ is possible. Thus $c = 2L_{\frac{z-1}{2}}$, and from the factorizations

$$ac = L_y - 1 = L_{\frac{z-1}{2}} M_{\frac{z-3}{2}}, \quad bc = L_z - 1 = L_{\frac{z-1}{2}} M_{\frac{z+1}{2}}$$

we obtain

$$a = \frac{1}{2}M_{\frac{z-3}{2}}$$
 and $b = \frac{1}{2}M_{\frac{z+1}{2}}$.

Finally, we show that c < b. (2.10) yields $M_{2k+1} = 2L_{2k} + 2L_{2k+2} > 4L_{2k}$. Now (z-1)/2 is even, so $2L_{\frac{z-1}{2}} < \frac{1}{2}M_{\frac{z+1}{2}}$. Thus c < b, contradicting the condition a < b < c.

10. $y \equiv 3$, $z \equiv 2 \pmod{4}$. We find z = y + 3, and

$$L_y - 1 = L_{\frac{y+1}{2}} M_{\frac{y-1}{2}} = L_{\frac{z-2}{2}} M_{\frac{z-4}{2}}, \quad L_z - 1 = L_{\frac{z-2}{2}} M_{\frac{z+2}{2}}.$$

By Lemma 2.4, $gcd(M_{\frac{z-4}{2}}, M_{\frac{z+2}{2}}) = 2$ follows (not $M_3 = 10$, because if the subscripts are divisible by 3, dividing them by 3 exactly one of the integers will be odd). Now

$$\alpha^{\frac{z}{4}-0.472} < \gcd(L_y - 1, L_z - 1) = 2L_{\frac{z-2}{2}} < \alpha^{0.527} \alpha^{\frac{z-2}{4}-0.680}$$

leads to a contradiction.

11. $y \equiv z \equiv 3 \pmod{4}$. In this case, i = j = -1 implies y = z, which is a contradiction.

12. $y \equiv 3$, $z \equiv 0 \pmod{4}$. Here z = y + 1, further

$$L_y - 1 = L_{\frac{y+1}{2}} M_{\frac{y-1}{2}} = L_{\frac{z}{2}} M_{\frac{z-2}{2}}, \quad L_z - 1 = \frac{1}{2} L_{\frac{z+2}{2}} M_{\frac{z-2}{2}}$$

hold. Lemma 2.4 provides $gcd(L_{\frac{z}{2}}, L_{\frac{z+2}{2}}) = 1$, and we obtain $gcd(L_y - 1, L_z - 1) = \frac{1}{2}M_{\frac{z-2}{2}}$ (because $L_{\frac{z+2}{2}}$ is odd). Hence

$$c|\gcd(L_y-1,L_z-1) = \frac{1}{2}M_{\frac{z-2}{2}} = c_1c > c_1\sqrt{L_z}.$$

By Lemma 2.7 we have $M_{\frac{z-2}{2}} < 2\sqrt{L_z}$. Thus $M_{\frac{z-2}{2}} > 2c_1\sqrt{L_z} > c_1M_{\frac{z-2}{2}}$, which implies $c_1 < 1$, an impossibility.

13. $y \equiv 0$, $z \equiv 1 \pmod{4}$. In this case z = y + 1, moreover

$$L_y - 1 = \frac{1}{2} L_{\frac{y+2}{2}} M_{\frac{y-2}{2}} = \frac{1}{2} L_{\frac{z+1}{2}} M_{\frac{z-3}{2}}, \quad L_z - 1 = L_{\frac{z-1}{2}} M_{\frac{z+1}{2}}.$$

By Lemma 2.4, we obtain $gcd(L_{\frac{z+1}{2}}, L_{\frac{z-1}{2}}) = 1$, $gcd(M_{\frac{z-3}{2}}, M_{\frac{z+1}{2}}) = 2$, $gcd(L_{\frac{z+1}{2}}, M_{\frac{z+1}{2}}) \le 2$, $gcd(M_{\frac{z-3}{2}}, L_{\frac{z-1}{2}}) \le 2$. Then

$$\alpha^{\frac{z}{4}-0.472} < \gcd(L_y - 1, L_z - 1) \le 8 < \alpha^{1.579}$$

implies z < 9.

14. $y \equiv 0$, $z \equiv 2 \pmod{4}$. Now, by Lemma 2.3, i = -2, j = 2, and $y \mp 2 = z \pm 2$ follow, which is not possible.

15. $y \equiv 0$, $z \equiv 3 \pmod{4}$. In this case z = y + 3, and

$$L_y - 1 = \frac{1}{2} L_{\frac{y+2}{2}} M_{\frac{y-2}{2}} = \frac{1}{2} L_{\frac{z-1}{2}} M_{\frac{z-5}{2}}, \quad L_z - 1 = L_{\frac{z+1}{2}} M_{\frac{z-1}{2}}.$$

Via Lemma 2.4 we see $gcd(L_{\frac{z-1}{2}}, L_{\frac{z+1}{2}}) = 1$, $gcd(M_{\frac{z-5}{2}}, M_{\frac{z-1}{2}}) = 2$, $gcd(L_{\frac{z-1}{2}}, M_{\frac{z-1}{2}}) = 1$, (because $\frac{z-1}{2}$, and so $L_{\frac{z-1}{2}}$ is odd), $gcd(M_{\frac{z-5}{2}}, L_{\frac{z+1}{2}}) \leq M_3 = 10$. These lead to a contradiction via

$$\alpha^{\frac{z}{4}-0.472} < \gcd(L_y - 1, L_z - 1) \le 20 < \alpha^{2.275}.$$

16. $y \equiv z \equiv 0 \pmod{4}$. In the last case the only possibility is z = y + 4. We have

$$L_y - 1 = \frac{1}{2} L_{\frac{y+2}{2}} M_{\frac{y-2}{2}} = \frac{1}{2} L_{\frac{z-2}{2}} M_{\frac{z-6}{2}}, \quad L_z - 1 = \frac{1}{2} L_{\frac{z+2}{2}} M_{\frac{z-2}{2}}.$$

By Lemma 2.4, we get

$$gcd(L_{\frac{z-2}{2}}, L_{\frac{z+2}{2}}) = 1,$$

$$gcd(M_{\frac{z-6}{2}}, M_{\frac{z-2}{2}}) = 2,$$

$$gcd(L_{\frac{z-2}{2}}, M_{\frac{z-2}{2}}) = 1 \text{ (because } (z-2)/2 \text{ is odd)},$$

$$gcd(M_{\frac{z-6}{2}}, L_{\frac{z+2}{2}}) \le M_4 = 14.$$

Then we obtain z < 10 from

$$\alpha^{\frac{z}{4} - 0.472} < \gcd(L_y - 1, L_z - 1) \le 14 < \alpha^{2.004}.$$

Case II: $z \leq 116$. The proof of Theorem 1 will be complete, if we check the finitely many cases $3 \leq x < y < z \leq 116$. It has been done by a computer verification based on the following observation. The equations (1.2) imply

$$(L_x - 1)(L_y - 1) = a^2bc = a^2(L_z - 1).$$

Thus

$$\sqrt{\frac{(L_x - 1)(L_y - 1)}{L_z - 1}} \tag{3.1}$$

must be an integer. Checking the given range we found that (3.1) is never an integer.

References

- M. Alp, N. Irmak and L. Szalay, *Balancing Diophantine Triples*, Acta Univ. Sapientiae 4 (2012), 11–19.
- M. Alp and N. Irmak, Pellans sequence and its diophantine triples, Publ. Inst. Math. 100(114) (2016), 259-269. https://doi.org/10.2298/pim1614259i
- [3] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214. https://doi.org/10.1515/crll.2004.003
- [4] C. Fuchs, F. Luca and L. Szalay, Diophantine triples with values in binary recurrences, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. III 5 (2008), 579–608.
- [5] C. Fuchs, C. Huttle, N. Irmak, F. Luca and L. Szalay, Only finitely many Tribonacci Diophantine triples exist, accepted in Math. Slovaca.
- [6] C. Fuchs, C. Huttle, F. Luca, L. Szalay, Diophantine triples and k-generalized Fibonacci sequences, accepted in Bull. Malay. Math. Sci. Soc.
- [7] B. He, A. Togbe and V. Ziegler, http://vziegler.sbg.ac.at/Papers/Quintuple. pdf.
- [8] V. E. Hoggatt and G. E. Bergum, A problem of a Fermat and Fibonacci sequence, Fibonacci Quart. 15 (1977), 323–330.
- [9] F. Luca and L. Szalay, Fibonacci Diophantine Triples, Glasnik Math. 43(63) (2008), 253-264.

https://doi.org/10.3336/gm.43.2.03

[10] F. Luca and L. Szalay, Lucas Diophantine Triples, Integers 9 (2009), 441–457. https://doi.org/10.1515/integ.2009.037