Diophantine triples in a Lucas-Lehmer sequence

Krisztián Gueth

Lorand Eötvös University
Savaria Department of Mathematics
Károli Gáspár tér 4
9700 Szombathely
Hungary
guethk@gmail.com

Submitted October 19, 2017 - Accepted August 24, 2018

Abstract

In this paper, we define a Lucas-Lehmer type sequence denoted by $\left(L_{n}\right)_{n=0}^{\infty}$, and show that there are no integers $0<a<b<c$ such that $a b+1, a c+1$ and $b c+1$ all are terms of the sequence.

Keywords: Diophantine triples, Lucas-Lehmer sequences
MSC: Primary 11B39; Secondary 11D99

1. Introduction

A diophantine m-tuple consists of m distinct positive integers such that the product of any two of them is one less than a square of an integer. Diophantus found the first four, but rational numbers $1 / 16,33 / 16,17 / 4,105 / 16$ with this property. Fermat gave $1,3,8,120$ as the first integer quadruple. Hoggatt and Bergum [8] provided infinitely many diophantine quadruples by $F_{2 k}, F_{2 k+2}, F_{2 k+4}, 4 F_{2 k+1} F_{2 k+2} F_{2 k+3}$. The most outstanding result is due to Dujella [3], who proved that there are only finitely many quintuples. Recently He, Togbe, and Ziegler submitted a work which solved the longstanding problem of the non-existence of diophantine quintuples [7].

There are several variations of the basic problem, most of them replace the squares by a given infinite set of integers. For instance, Luca and Szalay studied the diophantine triples for the terms of binary recurrences. They proved that there
are no integers $0<a<b<c$ such that $a b+1, a c+1$ and $b c+1$ all are Fibonacci numbers (see [9]), further for the Lucas sequence there is only one such a triple: $a=1, b=2, c=3$ (see [10]). Fuchs, Luca and Szalay [4] gave sufficient and necessary conditions to have infinitly many diophantine triples for a general second order sequence.

For ternary recurrences Fuchs et al. [5] justified that there exist only finitely many triples corresponding to Tribonacci sequence. This paper was generalized by Fuchs et al. [6]. Alp and Irmak were the first who investigated the existence of diophantine triples in a Lucas-Lehmer type sequence (see [2]). They showed that there are no diophantine triples for the so-called pellans sequence.

In this paper, we study another Lucas-Lehmer sequence and prove the nonexistence of diophantine triples associated to it. Let $\left(L_{n}\right)_{n=0}^{\infty}$ be defined by the initial values $L_{0}=0, L_{1}=1, L_{2}=1$ and $L_{3}=3$, and by the recursive rule

$$
\begin{equation*}
L_{n}=4 L_{n-2}-L_{n-4} \tag{1.1}
\end{equation*}
$$

Our principal result is the following.
Theorem 1.1. There exist no integers $0<a<b<c$ such that

$$
\begin{equation*}
a b+1=L_{x}, \quad a c+1=L_{y}, \quad b c+1=L_{z} \tag{1.2}
\end{equation*}
$$

would hold for any positive integers x, y and z.

2. Preliminaries

The associate sequence of $\left(L_{n}\right)$ is denoted by $\left(M_{n}\right)_{n=0}^{\infty}$, which according to the general theory of Lucas-Lehmer sequences satisfies $M_{0}=2, M_{1}=2, M_{2}=4$, $M_{3}=10$, and $M_{n}=4 M_{n-2}-M_{n-4}$. It is easy to see that L_{n} is divisible by 4 if and only if $4 \mid n$, otherwise L_{n} is odd. Using the recurrence relation (1.1), for negative subscripts $M_{-n}=(-1)^{n} M_{n}$ follows.

The zeros of the common characteristic polynomial $x^{4}-4 x^{2}+1$ of $\left(L_{n}\right)$ and $\left(M_{n}\right)$ are $\omega=(\sqrt{3}+1) / \sqrt{2}, \psi=(-\sqrt{3}+1) / \sqrt{2},-\omega$ and $-\psi$, further the initial values provide the explicit formulae

$$
\begin{align*}
& L_{n}=\frac{1+\sqrt{2}}{4 \sqrt{3}}\left(\omega^{n}-\psi^{n}\right)+\frac{1-\sqrt{2}}{4 \sqrt{3}}\left((-\omega)^{n}-(-\psi)^{n}\right) \\
& M_{n}=\frac{1+\sqrt{2}}{2}\left(\omega^{n}+\psi^{n}\right)+\frac{1-\sqrt{2}}{2}\left((-\omega)^{n}+(-\psi)^{n}\right) \tag{2.1}
\end{align*}
$$

It's trivial from the recursive rules of both $\left(L_{n}\right)$ and $\left(M_{n}\right)$ that the subsequences of terms with even resp. odd indices form second order sequences by the same coefficients. The zeros of their companion polynomial are $\alpha=\omega^{2}=2+\sqrt{3}$ and $\beta=\psi^{2}=2-\sqrt{3}$, and the dominant root is α.

Generally the Lucas-Lehmer sequences are union of two binary recursive sequences. Many properties, which are well known for binary sequences with initial
values 0 and 1, hold for Lucas-Lehmer sequences too (may be by a little modification). So the research of Lucas-Lehmer sequences is a new feature in the investigations.

In the sequel, we prove a few lemma which will be useful in proving the main theorem.

Lemma 2.1. If $n=m t$ and t is odd, then $M_{m} \mid M_{n}$.
Proof. The statement is obvious for $t=1$. Formula (2.1) admits

$$
\begin{align*}
M_{6 k} & =M_{2 k}\left(M_{4 k}-1\right), \tag{2.2}\\
M_{6 k+3} & =M_{2 k+1}\left(M_{4 k+2}+1\right), \tag{2.3}
\end{align*}
$$

which proves the lemma for $t=3$. It can be seen by induction on k that

$$
M_{n+k}= \begin{cases}\frac{1}{2} M_{n} M_{k}+M_{n-k}, & \text { if } n \equiv k \equiv 1(\bmod 2) \tag{2.4}\\ M_{n} M_{k}-(-1)^{k} M_{n-k}, & \text { otherwise }\end{cases}
$$

Finally, using (2.4), we can prove the lemma by induction on t.
Lemma 2.2. If $n=m t$ and t is even, then $\operatorname{gcd}\left(M_{n}, M_{m}\right)=2$.
Proof. Put $m=2 k$. From (2.1) it follows that

$$
\begin{equation*}
M_{4 k}=M_{2 k}^{2}-2 \tag{2.5}
\end{equation*}
$$

Subsequently, $\operatorname{gcd}\left(M_{2 k}, M_{4 k}\right)=2$. It can be seen that $M_{2^{l} k}(l \geq 3)$ can be expressed as a polynomial of $M_{2 k}$, where the constant term is always 2. Thus $\operatorname{gcd}\left(M_{2 k}, M_{2^{l} k}\right)=2(l \geq 2)$.

Now let $m=2 k+1$. Again by (2.1) we see that

$$
\begin{equation*}
M_{4 k+2}=M_{2 k+1}^{2} / 2+2 \tag{2.6}
\end{equation*}
$$

holds. Putting $H_{2 k+1}=M_{2 k+1}^{2} / 2$, it is trivial that $H_{2 k+1}$ and $M_{2 k+1}$ are divisible by the same primes, and the exponent of 2 is 1 in both integers. So $\operatorname{gcd}\left(H_{2 k+1}, N\right)=$ 2 and $\operatorname{gcd}\left(M_{2 k+1}, N\right)=2$ are equivalent for an arbitrary integer N. Hence we have $M_{4 k+2}=H_{2 k+1}+2$, and it implies $\operatorname{gcd}\left(M_{4 k+2}, H_{2 k+1}\right)=2$. By induction and (2.5) we can see that $M_{2^{l}(2 k+1)}$ can be written as a polynomial of $H_{2 k+1}$ for any positive integer l, with constant term 2. Consequently, $\operatorname{gcd}\left(M_{2 k+1}, M_{2^{l}(2 k+1)}\right)=$ $\operatorname{gcd}\left(H_{2 k+1}, M_{2^{l}(2 k+1)}\right)=2$. Together with Lemma 2.1, it shows immediately, that $\operatorname{gcd}\left(M_{m}, M_{t m}\right)=2$ for arbitrary even t.

Lemma 2.3. For any $n \geq 0$ we have

$$
L_{n}-1= \begin{cases}L_{\frac{n-1}{2}} M_{\frac{n+1}{2}}, & \text { if } n \equiv 1(\bmod 4) \tag{2.7}\\ L_{\frac{n+1}{2}} M_{\frac{n-1}{2}}, & \text { if } n \equiv 3(\bmod 4) \\ \frac{1}{2} L_{\frac{n+2}{2}} M_{\frac{n-2}{2}}, & \text { if } n \equiv 0(\bmod 4) \\ L_{\frac{n-2}{2}} M_{\frac{n+2}{2}}, & \text { if } n \equiv 2(\bmod 4)\end{cases}
$$

Proof. To prove the statement one can use the explicit formulae for the terms appearing in (2.7).

Lemma 2.4. The greatest common divisors of the terms of $\left(L_{n}\right)$ and $\left(M_{n}\right)$ satisfy

1. $\operatorname{gcd}\left(L_{m}, L_{n}\right)=L_{\operatorname{gcd}(m, n)}$;
2. $\operatorname{gcd}\left(M_{m}, M_{n}\right)= \begin{cases}M_{\operatorname{gcd}(m, n)}, & \text { if } \frac{m}{\operatorname{gcd}(m, n)} \equiv 1 \equiv \frac{n}{\operatorname{gcd}(m, n)}(\bmod 2), \\ 2, & \text { otherwise } ;\end{cases}$
3. $\operatorname{gcd}\left(L_{m}, M_{n}\right)= \begin{cases}\mu M_{\operatorname{gcd}(m, n)}, & \text { if } \frac{m}{\operatorname{gcd}(m, n)}+1 \equiv 1 \equiv \frac{n}{\operatorname{gcd}(m, n)}(\bmod 2), \\ 1 \text { or } 2, & \text { otherwise, }\end{cases}$ where $\mu=1$ or $1 / 2$.

Proof. We omit the proof of the first statement, the easiest part, and start by proving the second one. The main tool is a Euclidean-like algorithm. Assume that $m=n q+r$, where q is an odd integer, and $0 \leq r<2 n$. By (2.4) we have

$$
M_{m}=\mu M_{n q} M_{r} \pm M_{n q-r}
$$

The terms of $\left(M_{n}\right)$ is even, so μM_{r} is an integer. Let d be an integer which divides both M_{m} and M_{n}. Since q is odd, d divides $M_{n q}$, too. Thus $d \mid M_{n q-r}$ holds. On the other hand, if $d \mid M_{n}$ and $d \mid M_{n q-r}$, then similarly d divides M_{m}. Hence $\operatorname{gcd}\left(M_{m}, M_{n}\right)=\operatorname{gcd}\left(M_{n}, M_{n q-r}\right)$.

Suppose now $m>n$ and $n \nmid m$. After the first Euclidean-like division by n, replace m by $n q-r$, and continue with this, while the subscript is larger than n. After the last step, $n q-r$ might be negative. It is obvious that after two steps m is decreased by $4 n$. The last term of the sequence coming from these steps depends on the residue of the initial value of m modulo $4 n$. Let $r_{1} \equiv m(\bmod n)$, $r_{2} \equiv m(\bmod 4 n)$, and $0<r_{1}<n, 0<r_{2}<4 n$. In particular, for the last subscript r^{\prime} we found

$$
r^{\prime}= \begin{cases}r_{1}, & \text { if } 0<r_{2}<n \\ n-r_{1}, & \text { if } n<r_{2}<2 n \\ -r_{1}, & \text { if } 2 n<r_{2}<3 n \\ r_{1}-n, & \text { if } 3 n<r_{2}<4 n\end{cases}
$$

Obviously, $\operatorname{gcd}\left(n, r_{1}\right)=\operatorname{gcd}\left(n, r^{\prime}\right)$ and $0<\left|r^{\prime}\right|<n$, further if $d_{1} \mid m$ and $d_{1} \mid n$, then $d_{1} \mid n q-r$. Moreover if d_{1} divides both n and $n q-r$, then it must divide r and $m=n q+r$. This shows that $\operatorname{gcd}(m, n)=\operatorname{gcd}(n q-r, m)$. Thus $\operatorname{gcd}(m, n)=\operatorname{gcd}\left(r^{\prime}, n\right)$. Then apply this approach successively (replace the initial values of m by n, and n by $\left|r^{\prime}\right|$, and continue), and finish when the remainder is zero. The last nonzero remainder is the gcd.

To complete the proof of the second case, suppose that $\operatorname{gcd}(m, n)=1$. By the last division $n=1$ follows, and denote the value of m by m_{1}. The parities of $m=n q+r$ and $n q-r$ coincide in each step. If both m and n are odd, then the values of $n q-r, r^{\prime}$ are odd, hence so is m_{1}. If m is even and n is odd, then r^{\prime} is
even, and then the next division-sequence begins with odd m and even n. By the last division (where $n=1$) it follows that m_{1} must be even. Similarly, if the initial value of m is odd and n is even, then m_{1} is even, too.

Put $d_{2}=\operatorname{gcd}(m, n)$. It occurs if we multiply all the terms in the last paragraph by d_{2}. If both m / d_{2} and n / d_{2} are odd, then the quotient in the last division (that is m_{1}) is odd, and by the algorithm and Lemma 2.1, we have $\operatorname{gcd}\left(M_{m}, M_{n}\right)=\operatorname{gcd}\left(M_{m_{1} d_{2}}, M_{d_{2}}\right)=M_{d_{2}}$. If exactly one of m / d_{2} and n / d_{2} is even, then the last quotient $\left(m_{1}\right)$ is even, and $\operatorname{gcd}\left(M_{m}, M_{n}\right)=\operatorname{gcd}\left(M_{m_{1} d_{2}}, M_{d_{2}}\right)=2$ follows by Lemma 2.2.

Now prove the third statement. The explicite formulae provide

$$
\begin{align*}
2 \mu L_{m+n} & =L_{n} M_{m}+L_{m} M_{n} \tag{2.8}\\
2 \mu M_{m+n} & =12 L_{n} L_{m}+M_{n} M_{m} \tag{2.9}
\end{align*}
$$

where $\mu=2$ if both m and n are odd, and $\mu=1$ otherwise.
First we show that $\operatorname{gcd}\left(L_{k}, M_{k}\right)=2$ if $4 \mid k$, and $\operatorname{gcd}\left(L_{k}, M_{k}\right)=1$ otherwise. It is clear for $k=1,2,3,4$. From (2.8) and (2.9) we obtain

$$
\begin{aligned}
L_{k+4} & =\frac{1}{2}\left(L_{k} M_{4}+L_{4} M_{k}\right)=7 L_{k}+2 M_{k} \\
M_{k+4} & =\frac{1}{2}\left(12 L_{k} L_{4}+M_{k} M_{4}\right)=24 L_{k}+7 M_{k}
\end{aligned}
$$

By the Euclidean algorithm we have

$$
\begin{aligned}
\operatorname{gcd}\left(L_{k+4}, M_{k+4}\right) & =\operatorname{gcd}\left(7 L_{k}+2 M_{k}, 24 L_{k}+7 M_{k}\right) \\
& =\operatorname{gcd}\left(7 L_{k}+2 M_{k}, 3 L_{k}+M_{k}\right) \\
& =\operatorname{gcd}\left(L_{k}, 3 L_{k}+M_{k}\right)=\operatorname{gcd}\left(L_{k}, M_{k}\right)
\end{aligned}
$$

An induction implies the assertion for every k.
Now we show $\operatorname{gcd}\left(M_{k n}, L_{n}\right)=1$ or 2 , again by induction for k. We have just seen that it is true for $k=1$. Now (2.9) implies

$$
2 \mu M_{k n+n}=12 L_{k n} L_{n}+M_{k n} M_{n}
$$

Let d be an odd integer such that $d \mid M_{k n+n}$ and $d \mid L_{n}$. In this case $d \mid L_{k n}$, and we have shown that $\operatorname{gcd}\left(L_{k n}, M_{k n}\right) \leq 2$, so d is relatively prime to $M_{k n}$. Thus $d \mid M_{n}$. Further $\operatorname{gcd}\left(L_{n}, M_{n}\right) \leq 2$, and d is odd, so $d=1$. If n is not divisible by 4 , then L_{n} is odd, and $\operatorname{gcd}\left(M_{k n+n}, L_{n}\right)$ is necessarily 1. If $4 \mid n$, then $M_{k n+n}$ is not divisible by 4 , but $L_{k n+n}$ is even, $\operatorname{sog} \operatorname{gcd}\left(M_{k n+n}, L_{n}\right)=2$.

We will show that if k is odd, then $\operatorname{gcd}\left(M_{n}, L_{k n}\right)=1$ or 2 . Clearly, it is true for $k=1$. Suppose now that it holds for an odd k, and check it for $k+2$. It follows from (2.8) that

$$
2 \mu L_{k n+2 n}=L_{k n} M_{2 n}+M_{k n} L_{2 n}
$$

Let be d an odd integer which divides both $L_{k n+2 n}$ and M_{n}. Then $d \mid M_{k n}$ holds since k is odd. But d is relatively prime to $M_{2 n}$, so d must divide $L_{k n}$. We know
that $\operatorname{gcd}\left(L_{k n}, M_{k n}\right) \leq 2$, henceforward $d=1$. If $4 \nmid n$, then odd k entails odd $L_{(k+2) n}$, and if $4 \mid n$, then $4 \nmid M_{n}$. Hence $\operatorname{gcd}\left(M_{n}, L_{k n+2 n}\right)$ is 1 or 2 .

Assuming k is even, put $k=2^{l} t$, where t is odd. Then M_{n} divides $M_{t n}$, and we have $L_{2 t n}=\mu L_{t n} M_{t n}$, where μ is 1 or $1 / 2$. So $M_{t n} / 2 \mid L_{2 t n}$, and by induction, $M_{t n} / 2$ divides $L_{2^{l} t n}$. Subsequently, $\operatorname{gcd}\left(M_{n}, L_{k n}\right)$ is M_{n} or $M_{n} / 2$ for even k.

Thus the third statement is proven if one of n and m divides the other. For general m and n, suppose $m>n$, and let $m=n q+r$, where q is odd, $0<r<2 n$. From (2.8), $2 \mu L_{n q+r}=L_{n q} M_{r}+M_{n q} L_{r}$ follows. It is easy to see that for any odd d the conditions $\left(d \mid L_{m}\right.$ and $\left.d \mid M_{n}\right)$, and $\left(d \mid M_{n}\right.$ and $\left.d \mid M_{r}\right)$ are equivalent (for odd q use that M_{n} divides $M_{n q}$ and $\operatorname{gcd}\left(M_{n q}, L_{n q}\right)$ is 1 or 2$)$. So it is enough to determine the greatest odd common divisior of M_{n} and M_{r}, for which we use the second part of this lemma.

Trivially, $\operatorname{gcd}(n, r)=\operatorname{gcd}(n, m)$. Denote this value by c. If m / c is even and n / c is odd, then (because q is odd) r / c is odd (say this is case A). By the lemma, $\operatorname{gcd}\left(M_{n}, M_{r}\right)=M_{\operatorname{gcd}(n, r)}$. If m / c is odd and n / c is even, then r / c is odd. If both m / c and n / c are odd, then r / c is even. In these two cases (we call them case B) $\operatorname{gcd}\left(M_{n}, M_{r}\right)=2$ hold.

Clearly, M_{n} is not divisible by 8 , moreover L_{m} and M_{n} are both divisible by 4 if and only if $4 \mid m$ and $n \equiv 2(\bmod 4)$. In this case the exponent of 2 in $\operatorname{gcd}(n, m)$ is $1, m / c$ is even, and n / c is odd (this is case A), and $M_{\operatorname{gcd}(n, m)}$ is divisible by 4. It is easy to see that $\operatorname{gcd}\left(L_{m}, M_{n}\right)=M_{\operatorname{gcd}(n, m)}$. In the remaining situations of case A, $M_{\operatorname{gcd}(m, n)}$ is not divisible by 4. Thus $\operatorname{gcd}\left(L_{m}, M_{n}\right)$ is $M_{\operatorname{gcd}(n, m)}$ or one half of it. In case B, 4 does not divide L_{m} and M_{n} at the same time, so their gcd is 1 or 2 .

If $m<n$, then $n=m p+r$. Now p is not necessarily odd, therefore we can suppose $0<r<m$. Then from (2.9) we conclude $\operatorname{gcd}\left(L_{m}, M_{n}\right)=\operatorname{gcd}\left(L_{m}, M_{r}\right)$. To complete the proof we must use the previous case of this lemma.

The next lemma gives lower and upper bounds on the terms of $\left(L_{n}\right)$ and $\left(M_{n}\right)$ by powers of dominant root α.

Lemma 2.5. Suppose $n \geq 3$. We have

$$
\begin{gathered}
\alpha^{n-0.944}<L_{2 n}<\alpha^{n-0.943}, \quad \alpha^{n-0.181}<L_{2 n+1}<\alpha^{n-0.180}, \\
\alpha^{n}<M_{2 n}<\alpha^{n+0.001}, \quad \alpha^{n+0.763}<M_{2 n+1}<\alpha^{n+0.764}
\end{gathered}
$$

Further, independently from the parity of the subscript k,

$$
\alpha^{k / 2-0.944}<L_{k}<\alpha^{k / 2-0.680} \quad \text { and } \quad \alpha^{k / 2}<M_{k}<\alpha^{k / 2+0.264}
$$

hold.
Proof. Let n_{0} be a positive integer, and assume $n \geq n_{0}$. The explicit formula (2.1) simplifies $L_{2 n}=\left(\alpha^{n}-\beta^{n}\right) /(\alpha-\beta)$, which yields

$$
L_{2 n} \geq \frac{\alpha^{n}-\beta^{n_{0}}}{\alpha-\beta}=\alpha^{n} \frac{1-\left(\frac{\beta}{\alpha}\right)^{n_{0}} \alpha^{n_{0}-n}}{\alpha-\beta} \geq \alpha^{n} \frac{1-\left(\frac{\beta}{\alpha}\right)^{n_{0}}}{\alpha-\beta}
$$

Supposing $n_{0} \geq 3$, together with $0<\beta / \alpha<1$ it leads to

$$
\frac{1-\left(\frac{\beta}{\alpha}\right)^{n_{0}}}{\alpha-\beta} \geq \frac{1-\left(\frac{\beta}{\alpha}\right)^{3}}{\alpha-\beta}=0.28856 \ldots>\alpha^{-0.944}
$$

Thus $L_{2 n}>\alpha^{n-0.944}$. To get an upper bound is easier, since $\beta>0$ implies

$$
L_{2 n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}<\frac{\alpha^{n}}{\alpha-\beta}=\alpha^{n} \frac{1}{2 \sqrt{3}}<\alpha^{n-0.943}
$$

For odd subscripts a similar treatment is available by

$$
L_{2 n+1}=\frac{1}{\alpha-\beta}\left[(\sqrt{3}+1) \alpha^{n}+(\sqrt{3}-1) \beta^{n}\right]
$$

First we see

$$
L_{2 n+1}>\frac{1+\sqrt{3}}{2 \sqrt{3}} \alpha^{n}>\alpha^{n-0.181}
$$

Now assume $n \geq n_{0} \geq 3$. Consequently,

$$
\begin{aligned}
L_{2 n+1} & \leq \frac{1}{\alpha-\beta}\left[(\sqrt{3}+1) \alpha^{n}+(\sqrt{3}-1) \beta^{n_{0}}\right] \\
& =\alpha^{n}\left[\frac{\sqrt{3}+1}{2 \sqrt{3}}+\frac{\sqrt{3}-1}{2 \sqrt{3}}\left(\frac{\beta}{\alpha}\right)^{n_{0}} \alpha^{n_{0}-n}\right] \\
& \leq \alpha^{n}\left[\frac{\sqrt{3}+1}{2 \sqrt{3}}+\frac{\sqrt{3}-1}{2 \sqrt{3}}\left(\frac{\beta}{\alpha}\right)^{3}\right]=\alpha^{n} \cdot 0.788753 \ldots<\alpha^{n-0.180}
\end{aligned}
$$

The bounds for the terms M_{n} can be shown by an analogous way.
Lemma 2.6. Suppose that a, b, z, and the fractions appearing below are integers. Then

1. if $3 a \neq b$, then $\operatorname{gcd}\left(\frac{z+a}{2}, \frac{3 z+b}{8}\right) \leq\left|\frac{3 a-b}{2}\right|$,
2. if $2 a \neq b$, then $\operatorname{gcd}\left(\frac{z+a}{2}, \frac{2 z+b}{6}\right) \leq\left|\frac{2 a-b}{2}\right|$,
3. if $a \neq b$, then $\operatorname{gcd}\left(\frac{z+a}{2}, \frac{z+b}{4}\right) \leq\left|\frac{a-b}{2}\right|$.

Proof. The statements follow by a simple use of the Euclidean algorithm.
Lemma 2.7. Supposing $z \geq 4$, the following properties are valid.

1. If $z \equiv 1(\bmod 4)$, then $M_{\frac{z-1}{2}}^{2}<2 L_{z}$, further $3 L_{\frac{z-1}{2}}^{2}<2 L_{z}$.
2. If $z \equiv 3(\bmod 4)$, then $M_{\frac{z-1}{2}}^{2}<4 L_{z}$.
3. If $z \equiv 2(\bmod 4)$, then $M_{\frac{z-2}{2}}^{2}<2 L_{z}$.
4. If $z \equiv 0(\bmod 4)$, then $M_{\frac{z-2}{2}}^{2}<4 L_{z}$.

Proof. Use (2.5), (2.6), and

$$
M_{n}= \begin{cases}L_{n-1}+L_{n+1}, & \text { if } n \text { is even } \tag{2.10}\\ 2\left(L_{n-1}+L_{n+1}\right), & \text { if } n \text { is odd }\end{cases}
$$

Here (2.10) can be proven by induction.
Lemma 2.8. Suppose that a and b are positive real numbers and u_{0} is a positive integer. Let $\kappa=\log _{\alpha}\left(a+\frac{b}{\alpha^{u_{0}}}\right)$. If $u \geq u_{0}$, then

$$
a \alpha^{u}+b \leq \alpha^{u+\kappa}
$$

Proof. This is obvious by an easy calculation.

3. Proof of Theorem 1.1

The conditions $1 \leq a<b<c$ entail $3 \leq x<y<z$. Obviously, $c \mid L_{y}-1$ and $c \mid L_{z}-1$. Thus $c \leq \operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)$. Clearly, $L_{z}=b c+1<c^{2}$, which implies $\sqrt{L_{z}}<c$. Combining this with Lemma 2.5, we see

$$
\alpha^{\frac{z}{4}-0.472}=\alpha^{\frac{1}{2}\left(\frac{z}{2}-0.944\right)}<\sqrt{L_{z}}<c<L_{y}<\alpha^{\frac{y}{2}-0.680}
$$

and then $z / 4-0.472<y / 2-0.680$ yields $z<2 y-0.832$. Hence $z \leq 2 y-1$.
Now we distinguish two cases.
Case I: $z \geq 117$.
The key point of this case is to estimate $G=\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)$. Assume that $i, j \in\{ \pm 1, \pm 2\}$, and $\mu_{i}^{*}, \mu_{j}^{*} \in\{1,1 / 2\}$. By Lemma 2.3,

$$
\begin{aligned}
G & =\operatorname{gcd}\left(\mu_{i}^{*} L_{\frac{y-i}{2}} M_{\frac{y+i}{2}}, \mu_{j}^{*} L_{\frac{z-j}{2}} M_{\frac{z+j}{2}}\right) \\
& \leq \operatorname{gcd}\left(L_{\frac{y-i}{2}} M_{\frac{y+i}{2}}, L_{\frac{z-j}{2}} M_{\frac{z+j}{2}}\right) \\
& \leq \operatorname{gcd}\left(L_{\frac{y-i}{2}}, L_{\frac{z-j}{2}}\right) \operatorname{gcd}\left(L_{\frac{y-i}{2}}, M_{\frac{z+j}{2}}\right) \operatorname{gcd}\left(M_{\frac{y+i}{2}}, L_{\frac{z-j}{2}}\right) \operatorname{gcd}\left(M_{\frac{y+i}{2}}, M_{\frac{z+j}{2}}\right) .
\end{aligned}
$$

Let Q denote the last product. By Lemma 2.4

$$
Q \leq L_{\operatorname{gcd}\left(\frac{y-i}{2}, \frac{z-j}{2}\right)} M_{\operatorname{gcd}\left(\frac{y-i}{2}, \frac{z+j}{2}\right)} M_{\operatorname{gcd}\left(\frac{y+i}{2}, \frac{z-j}{2}\right)} M_{\operatorname{gcd}\left(\frac{y+i}{2}, \frac{z+j}{2}\right)}
$$

follows. We define $d_{1}, d_{2}, d_{3}, d_{4}$ according to the relations

$$
\begin{aligned}
& \operatorname{gcd}\left(\frac{y-i}{2}, \frac{z-j}{2}\right)=\frac{z-j}{2 d_{1}}, \quad \operatorname{gcd}\left(\frac{y-i}{2}, \frac{z+j}{2}\right)=\frac{z+j}{2 d_{2}} \\
& \operatorname{gcd}\left(\frac{y+i}{2}, \frac{z-j}{2}\right)=\frac{z-j}{2 d_{3}}, \quad \operatorname{gcd}\left(\frac{y+i}{2}, \frac{z+j}{2}\right)=\frac{z+j}{2 d_{4}} .
\end{aligned}
$$

Let $d=\min \left\{d_{1}, d_{2}, d_{3}, d_{4}\right\}$.
First suppose $d \geq 5$. Now Lemma 2.5, together with $|i|,|j| \leq 2$ implies

$$
\begin{aligned}
\alpha^{\frac{z}{4}-0.472} & <Q \leq L_{\frac{z-j}{2 d}} M_{\frac{z+j}{2 d}} M_{\frac{z-j}{2 d}} M_{\frac{z+j}{2 d}} \leq L_{\frac{z-j}{10}} M_{\frac{z+j}{10}} M_{\frac{z-j}{10}} M_{\frac{z+j}{10}} \\
& <\alpha^{\frac{z+2}{20}-0.680}\left(\alpha^{\frac{z+2}{20}+0.264}\right)^{3}=\alpha^{\frac{z+2}{5}+0.112}
\end{aligned}
$$

But $z / 4-0.472<(z+2) / 5+0.112$ contradicting $z \geq 117$.
Now let $d=4$, that is one of $d_{1}, d_{2}, d_{3}, d_{4}$ equals 4. Assume that $\eta_{1}, \eta_{2} \in\{ \pm 1\}$. Then $\left|\eta_{1} j\right|,\left|\eta_{2} i\right| \leq 2$, and we can assume $z+\eta_{1} j \geq y+\eta_{2} i$. Contrary, if it does not hold, then by the definition of d the inequality $5 / 4(z-2) \leq y+2$ is true, which together with $z>y$ implies $5 z \leq 4 y+18<5 y+18$. So $z<18$, which is not the case. Now we have only two possibilities:

$$
\frac{z+\eta_{1} j}{8}=\frac{y+\eta_{2} i}{2} \quad \text { or } \quad \frac{z+\eta_{1} j}{8}=\frac{y+\eta_{2} i}{6}
$$

In the first case we have $z=4 y+\left(4 \eta_{2} i-\eta_{1} j\right) \geq 4 y-10$, and by $z \leq 2 y-1$ we get $4 y-10 \leq 2 y-1$, which implies $y \leq 4$, and then $z \leq 7$, a contradiction.

In the second case let $\eta_{1}^{\prime}, \eta_{2}^{\prime} \in\{ \pm 1\}$, such that $\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}\right) \neq\left(\eta_{1}, \eta_{2}\right)$. Clearly,

$$
y=\frac{3 z+3 \eta_{1} j-4 \eta_{2} i}{4}, \quad \text { and } \quad \frac{y+\eta_{2}^{\prime} i}{2}=\frac{3 z+3 \eta_{1} j+4\left(\eta_{2}^{\prime}-\eta_{2}\right) i}{8}
$$

Put $t=4\left(\eta_{2}^{\prime}-\eta_{2}\right)$. Thus $t=0$ or ± 8. Applying the first assertion of Lemma 2.6 with $a=\eta_{1}^{\prime} j$ and $b=3 \eta_{1} j+t i$, it gives

$$
\operatorname{gcd}\left(\frac{z+\eta_{1}^{\prime} j}{2}, \frac{y+\eta_{2}^{\prime} i}{2}\right)=\operatorname{gcd}\left(\frac{z+\eta_{1}^{\prime} j}{2}, \frac{3 z+3 \eta_{1} j+t i}{8}\right) \leq\left|\frac{3 \eta_{1}^{\prime} j-3 \eta_{1} j-t i}{2}\right|
$$

which does not exceed 14. This conclusion is correct if $3 a-b \neq 0$, that is if $3 \eta_{1}^{\prime}-3 \eta_{1} j-t i \neq 0$. If $3 a-b=0$, then $3 \mid t$, and then $t=0$. Thus η_{1}^{\prime} must be equal to η_{1}, so $\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}\right)=\left(\eta_{1}, \eta_{2}\right)$, which has been excluded. Subsequently, three of the four factors of Q is at most $M_{14}\left(M_{n} \geq L_{n}\right.$ for any index $\left.n\right)$ and the fourth factor is $L_{\frac{z \pm j}{8}}$ or $M_{\frac{z \pm j}{8}}$, none of them exceeding $M_{\frac{z+2}{8}}$. So

$$
Q \leq M_{14}^{3} M_{\frac{z+2}{8}}=10084^{3} M_{\frac{z+2}{8}}
$$

and then, by Lemma 2.5, we have

$$
\alpha^{\frac{z}{4}-0.472}<Q<\alpha^{21.003} \alpha^{\frac{z+2}{16}+0.264}
$$

Now we conclude $z<116.7$, and it is a contradiction with $z \geq 117$.
Suppose $d=3$. We have the two possibilities

$$
\frac{z+\eta_{1} j}{6}=\frac{y+\eta_{2} i}{2} \quad \text { and } \quad \frac{z+\eta_{1} j}{6}=\frac{y+\eta_{2} i}{4}
$$

In the first case $2 y-1 \geq z=3\left(y+\eta_{2} i\right)-\eta_{1} j \geq 3 y-8$ implies $y \leq 7$, and then $z \leq 13$, which is impossible.

In the second case we repeat the treatment of case $d=4$, the variables η_{1}^{\prime} and η_{2}^{\prime} satisfy the same conditions. Now $y=\left(2 z+2 \eta_{1} j-3 \eta_{2} i\right) / 3$ provides

$$
\frac{y+\eta_{2}^{\prime} i}{2}=\frac{2 z+2 \eta_{1} j-3 \eta_{2} i+3 \eta_{2}^{\prime} i}{6}=\frac{2 z+2 \eta_{1} j+3\left(\eta_{2}^{\prime}-\eta_{2}\right) i}{6}
$$

Let be $t=3\left(\eta_{2}^{\prime}-\eta_{2}\right)$ with value 0 or ± 6. Use the second assertion of Lemma 2.6 with $a=\eta_{1} j, b=2 \eta_{1} j+t i$. If $2 a-b \neq 0$ then

$$
\operatorname{gcd}\left(\frac{z+\eta_{1}^{\prime} j}{2}, \frac{y+\eta_{2}^{\prime} i}{2}\right)=\operatorname{gcd}\left(\frac{z+\eta_{1}^{\prime} j}{2}, \frac{2 z+2 \eta_{1} j+t i}{6}\right) \leq\left|\frac{2 \eta_{1}^{\prime} j-2 \eta_{1} j-t i}{2}\right|,
$$

which is less then or equal to 10 . If $2 a-b=0$, that is if $2 \eta_{1}^{\prime} j-2 \eta_{1} j-t i=0$, then $3 \mid t$ and $j \nmid t$ show $3 \mid \eta_{t}^{\prime}-\eta_{1}$, which can hold only if $\eta_{1}^{\prime}=\eta_{1}$. But in this case t must be zero, too. So $\left(\eta_{1}, \eta_{2}^{\prime}\right)=\left(\eta_{1}, \eta_{2}\right)$, which is not allowed. We have

$$
\alpha^{\frac{z}{4}-0.472}<Q \leq M_{10}^{3} M_{\frac{z+2}{6}}<724^{3} \alpha^{\frac{z+2}{12}+0.264}
$$

by using Lemma 2.5. This implies $z<96$, again a contradiction.
Now suppose $d=2$. The only possibility is

$$
\frac{z+\eta_{1} j}{4}=\frac{y+\eta_{2} i}{2}
$$

$\left(\eta_{1}^{\prime}\right.$ and η_{2}^{\prime} are the same as in the previous cases.) It leads to $y=\left(z+\eta_{1} j-2 \eta_{2} i\right) / 2$, and then to

$$
\frac{y+\eta_{2}^{\prime} i}{2}=\frac{z+\eta_{1} j-2 \eta_{2} i+2 \eta_{2}^{\prime} i}{4}=\frac{z+\eta_{1} j+t i}{4}
$$

where $t=2\left(\eta_{2}^{\prime}-\eta_{2}\right) \in\{0, \pm 4\}$. Let $a=\eta_{1}^{\prime} j, b=\eta_{1} j+t i$. If $a \neq b$, then by the third assertion of Lemma 2.6 we have

$$
\operatorname{gcd}\left(\frac{z+\eta_{1}^{\prime} j}{2}, \frac{y+\eta_{2}^{\prime} i}{2}\right)=\operatorname{gcd}\left(\frac{z+\eta_{1}^{\prime} j}{2}, \frac{z+\eta_{1} j+t i}{4}\right) \leq\left|\frac{\eta_{1}^{\prime} j-\eta_{1} j-t i}{2}\right| \leq 6 .
$$

Thus

$$
\alpha^{\frac{z}{4}-0.472}<Q \leq M_{6}^{3} M_{\frac{z+2}{4}}<\alpha^{9.003} \alpha^{\frac{z+2}{8}+0.264}
$$

and we arrived at a contradiction via $z<80$. If $a-b=0$, then $\left(\eta_{1}^{\prime}-\eta_{1}\right) j=t i$. Now, if $j= \pm 1$, then (because t is divisible by 4) 4| $\eta_{1}^{\prime}-\eta_{1}$ must hold. This occurs only if $\eta_{1}^{\prime}=\eta_{1}$, hence $t=0$, so $\eta_{2}^{\prime}=\eta_{2}$, which has been excluded. Thus we may suppose $j= \pm 2$ and $\eta_{1}^{\prime} \neq \eta_{1}$. In this case $\eta_{1}^{\prime}-\eta_{1}= \pm 2$, and $i= \pm 1$. The factors of Q belong to $\left(-\eta_{1}, \eta_{2}\right)$ and $\left(\eta_{1},-\eta_{2}\right)$ can be estimated by M_{6}. If $\left(\eta_{1}, \eta_{2}\right)=(1,1)$, then this factor is $\operatorname{gcd}\left(M_{\frac{y+i}{2}}, M_{\frac{z+j}{2}}\right)$, which is 2 via $(z+j) / 4=(y+i) / 2$ and

Lemma 2.4. If $\left(\eta_{1}, \eta_{2}\right)=(1,-1)$, then similarly $\operatorname{gcd}\left(L_{\frac{y-i}{2}}, M_{\frac{z+j}{2}}\right) \leq 2$. In this two cases we have

$$
\alpha^{\frac{z}{4}-0.472}<Q \leq 2 M_{6}^{2} M_{\frac{z+2}{4}}<\alpha^{6.527} \alpha^{\frac{z+2}{8}+0.264}
$$

and then $z \leq 60$, a contradiction.
Let $\left(\eta_{1}, \eta_{2}\right)=(-1,-1)$ or $(-1,1)$. From $\left(z+\eta_{1} j\right) / 4=\left(y+\eta_{2} i\right) / 2$ and $|j|=2$, $|i|=1$ it is easy to see that $\left(z-\eta_{1} j\right) / 2=2\left(y-\eta_{2} i\right) / 2$ or $\left(z-\eta_{1} j\right) / 2=2(y-$ $\left.\eta_{2} i\right) / 2 \pm 4$. If the first case holds, then $\operatorname{gcd}\left(\left(z-\eta_{1} j\right) / 2,\left(y-\eta_{2} i\right) / 2\right)=\left(z-\eta_{1} j\right) / 4$. Further if $\left(\eta_{1}, \eta_{2}\right)=(-1,-1)$, then the factor of Q belonging to $\left(-\eta_{1},-\eta_{2}\right)$ is $\operatorname{gcd}\left(M_{\frac{y+i}{2}}, M_{\frac{z+j}{2}}\right)=2$ (by Lemma 2.4). If $\left(\eta_{1}, \eta_{2}\right)=(-1,1)$, then the factor $\operatorname{gcd}\left(L_{\frac{y-i}{2}}, M_{\frac{z+j}{2}}\right)=1$ or 2 . If $\left(z-\eta_{1} j\right) / 2=2\left(y-\eta_{2} i\right) / 2 \pm 4$ holds, it can be seen by the Euclidean algorithm that $\operatorname{gcd}\left(\left(z-\eta_{1} j\right) / 2,\left(y-\eta_{2} i\right) / 2\right) \leq 4$, and the factor of Q is at most $M_{4}=14$. So in these cases we conclude

$$
\alpha^{\frac{z}{4}-0.472}<Q \leq M_{4} M_{6}^{2} M_{\frac{z+2}{4}}<\alpha^{8.005} \alpha^{\frac{z+2}{8}+0.264}
$$

and this implies $z<72$.
Assume $d=1$. Now

$$
\frac{z+\eta_{1} j}{2}=\frac{y+\eta_{2} i}{2}
$$

where $\eta_{1}, \eta_{2}= \pm 1$, and it reduces to $z \pm j=y \pm i$ with $i, j \in\{ \pm 1, \pm 2\}$ According to Lemma 2.3 the values depend of the residue y and z modulo 4. Altogether, it means that we need to verify 16 cases.

1. $\boldsymbol{y} \equiv \boldsymbol{z} \equiv 1(\bmod 4)$. Clearly, now $i=j=1$, so $z \pm 1=y \pm 1$. The condition $y \equiv z(\bmod 4)$ leads immediately to $y=z$, a contradiction.
2. $\boldsymbol{y} \equiv \mathbf{1}, \boldsymbol{z} \equiv \mathbf{2}(\bmod 4)$. Now $i=1, j=2$. Thus $z \pm 2=y \pm 1$, and then $z=y \pm 3$ or $z=y \pm 1$. Considering them modulo 4 , the only possibility is $z=y+1$. By Lemma 2.3, we conclude

$$
L_{y}-1=L_{\frac{y-1}{2}} M_{\frac{y+1}{2}}=L_{\frac{z-2}{2}} M_{\frac{z}{2}}, \quad \text { and } \quad L_{z}-1=L_{\frac{z-2}{2}} M_{\frac{z+2}{2}} .
$$

The common factor $L_{\frac{z-2}{2}}$ together with $\operatorname{gcd}\left(M_{\frac{z}{2}}, M_{\frac{z+2}{2}}\right)=2$ and by Lemma 2.5 provides a contradiction again, since

$$
\alpha^{\frac{z}{4}-0.472}<\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)=2 L_{\frac{z-2}{2}}<\alpha^{0.527} \alpha^{\frac{z-2}{4}-0.680}=\alpha^{\frac{z}{4}-0.653}
$$

3. $y \equiv 1, z \equiv 3(\bmod 4)$. Here $i=1, j=-1$, and the only possibility is $z=y+2$. It follows that

$$
L_{y}-1=L_{\frac{y-1}{2}} M_{\frac{y+1}{2}}=L_{\frac{z-3}{2}} M_{\frac{z-1}{2}}, \quad L_{z}-1=L_{\frac{z+1}{2}} M_{\frac{z-1}{2}},
$$

where $\operatorname{gcd}\left(L_{\frac{z+1}{2}}, L_{\frac{z-3}{2}}\right)=1$. Now

$$
c \left\lvert\, \operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)=M_{\frac{z-1}{2}}=c_{1} c>c_{1} \sqrt{L_{z}}\right.
$$

holds with an appropriate integer c_{1}. By Lemma 2.7, $M_{\frac{z-1}{2}}<2 \sqrt{L_{z}}$. So we have $c_{1} \sqrt{L_{z}}<M_{\frac{z-1}{2}}<2 \sqrt{L_{z}}$, which implies $c_{1}<2$, i.e. $c_{1}=1$. Thus $c=M_{\frac{z-1}{2}}$, and we can see from the factorization of $L_{y}-1$ and $L_{z}-1$ that $a=L_{\frac{z-3}{2}}, b=L_{\frac{z+1}{2}}$. Lemma 2.5 shows

$$
\alpha^{\frac{x}{2}-0.680}>L_{x}=a b+1=L_{\frac{z-3}{2}} L_{\frac{z+1}{2}}+1>L_{\frac{z-3}{2}} L_{\frac{z+1}{2}}>\alpha^{\frac{z-3}{4}-0.944} \alpha^{\frac{z+1}{4}-0.944} .
$$

Clearly, $x>z-3.416$, and then $x \geq z-3$. In our case $x<y=z-2$ holds, so $x=$ $z-3$. This implies $L_{z-3}-1=L_{x}-1=L_{\frac{z-3}{2}} L_{\frac{z+1}{2}}$, which entails $\left.L_{\frac{z-3}{2}} \right\rvert\, L_{z-3}-1$. Combining it with $\left.L_{\frac{z-3}{2}} \right\rvert\, L_{z-3}$, we have $L_{\frac{z-3}{2}}=1$, and z is too small.
4. $\boldsymbol{y} \equiv 1, z \equiv 0(\bmod 4)$. In this case $z=y+3$, and

$$
L_{y}-1=L_{\frac{y-1}{2}} M_{\frac{y+1}{2}}=L_{\frac{z-4}{2}} M_{\frac{z-2}{2}}, \quad L_{z}-1=\frac{1}{2} L_{\frac{z+2}{2}} M_{\frac{z-2}{2}} .
$$

The distance of the subscripts of the appropriate terms of $\left(L_{n}\right)$ is 3 , so $\operatorname{gcd}\left(L_{\frac{z-4}{2}}, \frac{1}{2} L_{\frac{z+2}{2}}\right) \leq \operatorname{gcd}\left(L_{\frac{z-4}{2}}, L_{\frac{z+2}{2}}\right)=1$ or 3 . So $\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right) \left\lvert\, 3 M_{\frac{z-2}{2}}\right.$. Therefore there exist a positive integer c_{1} such that

$$
c\left|\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)\right| 3 M_{\frac{z-2}{2}}=c_{1} c>c_{1} \sqrt{L_{z}} .
$$

Lemma 2.7 implies $M_{\frac{z-2}{2}}<2 \sqrt{L_{z}}$, and so $6 \sqrt{L_{z}}>3 M_{\frac{z-2}{2}}>c_{1} \sqrt{L_{z}}$ hold. Thus $c_{1}<6$. Since $L_{\frac{z+2}{2}}$ is odd, $M_{\frac{z-2}{2}}$ does not divide $L_{z}-1$. So we have $\operatorname{gcd}\left(L_{y}-\right.$ $\left.1, L_{z}-1\right)=\lambda M_{\frac{z-2}{2}}^{2} / 2$, where $\lambda=1$ or 3 .

When $\lambda=1, c^{2}$ divides $M_{\frac{z-2}{2}} / 2=3 M_{\frac{z-2}{2}} / 6$, which implies $c_{1} \geq 6$, a contradiction.

Assuming $\lambda=3$, it yields $c \left\lvert\, 3 M_{\frac{z-2}{2}} / 2\right.$. Thus either $c=3 M_{\frac{z-2}{2}} / 2\left(c_{1}=2\right)$ or $c=3 M_{\frac{z-2}{2}} / 4\left(c_{1}=4\right)$ holds. We can exclude the second case, because $(z-2) / 2$ is odd, and so $M_{\frac{z-2}{2}}$ is not divisible by 4 . In the first case $b=L_{\frac{z+2}{2}} / 3$ and $a=2 L_{\frac{z-4}{2}} / 3$ follow from

$$
b c=L_{z}-1=\frac{1}{2} M_{\frac{z-2}{2}} L_{\frac{z+2}{2}} \quad \text { and } \quad a c=L_{y}-1=M_{\frac{z-2}{2}} L_{\frac{z-4}{2}},
$$

respectively.
Using the fact that $L_{2 k-2} L_{2 k+1}+1=L_{2 k-1} L_{2 k}$ holds for every positive integer k (this comes from the explicit formula (2.1)), we can write

$$
L_{x}=a b+1=\frac{2}{9} L_{\frac{z-4}{2}} L_{\frac{z+2}{2}}+1=\frac{2}{9}\left(L_{\frac{z-2}{2}} L_{\frac{z}{2}}-1\right)+1=\frac{2}{9} L_{\frac{z-2}{2}} L_{\frac{z}{2}}+\frac{7}{9} .
$$

By Lemma 2.5 we obtain

$$
\alpha^{\frac{x}{2}-0.680}>L_{x}=\frac{2}{9} L_{\frac{z-2}{2}} L_{\frac{z}{2}}+\frac{7}{9}>\frac{2}{9} L_{\frac{z-2}{2}} L_{\frac{z}{2}}>\alpha^{-1.143} \alpha^{\frac{z-2}{4}-0.681} \alpha^{\frac{z}{4}-0.944}
$$

(since $(z-2) / 2$ is odd). It implies $x>z-5.176$, so $x \geq z-5$ holds.

We will reach the contradiction by showing $a b+1<L_{z-5}$. Knowing that z is even, $L_{z-5}>\alpha^{\frac{z-5}{2}-0.681}=\alpha^{\frac{z}{2}-3.181}$ follows from Lemma 2.5. Since

$$
L_{\frac{z-2}{2}} L_{\frac{z}{2}}>\alpha^{\frac{z-4}{2}-0.681} \alpha^{\frac{z}{4}-0.944}=\alpha^{\frac{z}{2}-2.125}
$$

and $z \geq 16$, the exponent of α is at least 5.875 . Applying Lemma 2.8 with $u_{0}=5$, we have $\kappa=\log _{\alpha}\left(\left(2+7 \alpha^{-5}\right) / 9\right)<-1.138$, and then

$$
a b+1=\frac{2}{9} L_{\frac{z-2}{2}} L_{\frac{z}{2}}+\frac{7}{9}<\alpha^{-1.138} \alpha^{\frac{z-2}{4}-0.68} \alpha^{\frac{z}{4}-0.943}=\alpha^{\frac{z}{2}-3.261}
$$

From these inequalities

$$
L_{z-5}>\alpha^{\frac{z}{2}-3.181}>\alpha^{\frac{z}{2}-3.261}>a b+1
$$

follows, and the proof of this part is complete.
5. $\boldsymbol{y} \equiv \mathbf{2}, \quad \boldsymbol{z} \equiv \mathbf{1}(\bmod 4)$. Now $z=y+3$, further

$$
L_{y}-1=L_{\frac{y-2}{2}} M_{\frac{y+2}{2}}=L_{\frac{z-5}{2}} M_{\frac{z-1}{2}}, \quad L_{z}-1=L_{\frac{z-1}{2}} M_{\frac{z+1}{2}} .
$$

It is easy to see from Lemma 2.4 that $\operatorname{gcd}\left(L_{\frac{z-5}{2}}, L_{\frac{z-1}{2}}\right)=1, \operatorname{gcd}\left(M_{\frac{z+1}{2}}, M_{\frac{z-1}{2}}\right)=2$, $\operatorname{gcd}\left(L_{\frac{z-5}{2}}, M_{\frac{z+1}{2}}\right) \leq M_{3}=10, \operatorname{gcd}\left(M_{\frac{z-1}{2}}, L_{\frac{z-1}{2}}\right) \leq 2$. Consequently,

$$
\alpha^{\frac{z}{4}-0.472}<\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right) \leq 40<\alpha^{2.802}
$$

and then $z<14$, a contradiction again.
6. $\boldsymbol{y} \equiv \boldsymbol{z} \equiv \mathbf{2}(\bmod 4)$. In this case $i=j=2$. Then $z=y+4$ follows. The identities

$$
L_{y}-1=L_{\frac{y-2}{2}} M_{\frac{y+2}{2}}=L_{\frac{z-6}{2}} M_{\frac{z-2}{2}}, \quad L_{z}-1=L_{\frac{z-2}{2}} M_{\frac{z+2}{2}}
$$

and $\operatorname{gcd}\left(L_{\frac{z-6}{2}}, L_{\frac{z-2}{2}}\right)=1, \operatorname{gcd}\left(M_{\frac{z-2}{2}}, M_{\frac{z+2}{2}}\right)=2$ (because both terms cannot be divisible by 4$), \operatorname{gcd}\left(L_{\frac{z-6}{2}}, M_{\frac{z+2}{2}}\right) \leq M_{4}=14, \operatorname{gcd}\left(M_{\frac{z-2}{2}}, L_{\frac{z-2}{2}}\right) \leq 2$ (see Lemma 2.4) induce

$$
\alpha^{\frac{z}{4}-0.472}<\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right) \leq 56<\alpha^{3.057}
$$

which gives $z<15$.
7. $\boldsymbol{y} \equiv \mathbf{2}, \quad \boldsymbol{z} \equiv \mathbf{3}(\bmod 4)$. Here $z=y+1$, moreover we have

$$
L_{y}-1=L_{\frac{y-2}{2}} M_{\frac{y+2}{2}}=L_{\frac{z-3}{2}} M_{\frac{z+1}{2}}, \quad L_{z}-1=L_{\frac{z+1}{2}} M_{\frac{z-1}{2}} .
$$

Again by Lemma 2.4,

$$
\begin{aligned}
& \operatorname{gcd}\left(L_{\frac{z-3}{2}}, L_{\frac{z+1}{2}}\right)=1, \quad \operatorname{gcd}\left(M_{\frac{z+1}{2}}, M_{\frac{z-1}{2}}\right)=2 \\
& \operatorname{gcd}\left(L_{\frac{z-3}{2}}, M_{\frac{z-1}{2}}\right) \leq 2, \quad \operatorname{gcd}\left(M_{\frac{z+1}{2}}, L_{\frac{z+1}{2}}\right) \leq 2
\end{aligned}
$$

Thus

$$
\alpha^{\frac{z}{4}-0.472}<\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right) \leq 8<\alpha^{1.579}
$$

follows, which implies $z<9$.
8. $\boldsymbol{y} \equiv \mathbf{2}, \quad \boldsymbol{z} \equiv \mathbf{0}(\boldsymbol{\operatorname { m o d } 4)}$. Now $i=2, j=-2$, and $y \pm 2=j \mp 2$ cannot hold modulo 4 .
9. $\boldsymbol{y} \equiv \mathbf{3}, \quad \boldsymbol{z} \equiv \mathbf{1}(\bmod 4)$. In this case the only possibility is $z=y+2$. Obviously,

$$
L_{y}-1=L_{\frac{y+1}{2}} M_{\frac{y-1}{2}}=L_{\frac{z-1}{2}} M_{\frac{z-3}{2}}, \quad L_{z}-1=L_{\frac{z-1}{2}} M_{\frac{z+1}{2}}
$$

hold. Beside the common factor, we get $\operatorname{gcd}\left(M_{\frac{z-3}{2}}, M_{\frac{z+1}{2}}\right)=2$ (because the subscripts are odd). Hence $\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)=2 L_{\frac{z-1}{2}}^{2}$, further we see

$$
c \left\lvert\, \operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)=2 L_{\frac{z-1}{2}}=c_{1} c>c_{1} \sqrt{L_{z}}\right.
$$

with an appropriate c_{1}. By the second assertion of case (1) in Lemma 2.7, $\sqrt{L_{z}}>$ $\sqrt{3 / 2} L_{\frac{z-1}{2}}$, subsequently

$$
2 L_{\frac{z-1}{2}}>c_{1} \sqrt{L_{z}}>c_{1} \sqrt{\frac{3}{2}} L_{\frac{z-1}{2}}
$$

holds, providing $c_{1}<\frac{2 \sqrt{2}}{\sqrt{3}}<2$. So only $c_{1}=1$ is possible. Thus $c=2 L_{\frac{z-1}{2}}$, and from the factorizations

$$
a c=L_{y}-1=L_{\frac{z-1}{2}} M_{\frac{z-3}{2}}, \quad b c=L_{z}-1=L_{\frac{z-1}{2}} M_{\frac{z+1}{2}}
$$

we obtain

$$
a=\frac{1}{2} M_{\frac{z-3}{2}} \quad \text { and } \quad b=\frac{1}{2} M_{\frac{z+1}{2}} .
$$

Finally, we show that $c<b$. (2.10) yields $M_{2 k+1}=2 L_{2 k}+2 L_{2 k+2}>4 L_{2 k}$. Now $(z-1) / 2$ is even, so $2 L_{\frac{z-1}{2}}<\frac{1}{2} M_{\frac{z+1}{2}}$. Thus $c<b$, contradicting the condition $a<b<c$.
10. $\boldsymbol{y} \equiv \mathbf{3}, \quad \boldsymbol{z} \equiv \mathbf{2}(\bmod 4)$. We find $z=y+3$, and

$$
L_{y}-1=L_{\frac{y+1}{2}} M_{\frac{y-1}{2}}=L_{\frac{z-2}{2}} M_{\frac{z-4}{2}}, \quad L_{z}-1=L_{\frac{z-2}{2}} M_{\frac{z+2}{2}} .
$$

By Lemma 2.4, $\operatorname{gcd}\left(M_{\frac{z-4}{2}}, M_{\frac{z+2}{2}}\right)=2$ follows (not $M_{3}=10$, because if the subscripts are divisible by 3 , dividing them by 3 exactly one of the integers will be odd). Now

$$
\alpha^{\frac{z}{4}-0.472}<\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)=2 L_{\frac{z-2}{2}}<\alpha^{0.527} \alpha^{\frac{z-2}{4}-0.680}
$$

leads to a contradiction.
 contradiction.
12. $\boldsymbol{y} \equiv \mathbf{3 ,} \quad \boldsymbol{z} \equiv \mathbf{0}(\bmod 4)$. Here $z=y+1$, further

$$
L_{y}-1=L_{\frac{y+1}{2}} M_{\frac{y-1}{2}}=L_{\frac{z}{2}} M_{\frac{z-2}{2}}, \quad L_{z}-1=\frac{1}{2} L_{\frac{z+2}{2}} M_{\frac{z-2}{2}}
$$

hold. Lemma 2.4 provides $\operatorname{gcd}\left(L_{\frac{z}{2}}, L_{\frac{z+2}{2}}\right)=1$, and we obtain $\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)=$ $\frac{1}{2} M_{\frac{z-2}{2}}$ (because $L_{\frac{z+2}{2}}$ is odd). Hence

$$
c \left\lvert\, \operatorname{gcd}\left(L_{y}-1, L_{z}-1\right)=\frac{1}{2} M_{\frac{z-2}{2}}=c_{1} c>c_{1} \sqrt{L_{z}} .\right.
$$

By Lemma 2.7 we have $M_{\frac{z-2}{2}}<2 \sqrt{L_{z}}$. Thus $M_{\frac{z-2}{2}}>2 c_{1} \sqrt{L_{z}}>c_{1} M_{\frac{z-2}{2}}$, which implies $c_{1}<1$, an impossibility.
13. $\boldsymbol{y} \equiv \mathbf{0}, \quad \boldsymbol{z} \equiv \mathbf{1}(\boldsymbol{\operatorname { m o d } 4)}$. In this case $z=y+1$, moreover

$$
L_{y}-1=\frac{1}{2} L_{\frac{y+2}{2}} M_{\frac{y-2}{2}}=\frac{1}{2} L_{\frac{z+1}{2}} M_{\frac{z-3}{2}}, \quad L_{z}-1=L_{\frac{z-1}{2}} M_{\frac{z+1}{2}} .
$$

By Lemma 2.4, we obtain $\operatorname{gcd}\left(L_{\frac{z+1}{2}}, L_{\frac{z-1}{2}}\right)=1, \operatorname{gcd}\left(M_{\frac{z-3}{2}}, M_{\frac{z+1}{2}}\right)=2$, $\operatorname{gcd}\left(L_{\frac{z+1}{2}}, M_{\frac{z+1}{2}}\right) \leq 2, \operatorname{gcd}\left(M_{\frac{z-3}{2}}, L_{\frac{z-1}{2}}\right) \leq 2$. Then

$$
\alpha^{\frac{z}{4}-0.472}<\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right) \leq 8<\alpha^{1.579}
$$

implies $z<9$.
14. $\boldsymbol{y} \equiv \mathbf{0}, \boldsymbol{z} \equiv \mathbf{2}(\bmod 4)$. Now, by Lemma $2.3, i=-2, j=2$, and $y \mp 2=z \pm 2$ follow, which is not possible.
15. $\boldsymbol{y} \equiv \mathbf{0}, \quad \boldsymbol{z} \equiv \mathbf{3}(\bmod 4)$. In this case $z=y+3$, and

$$
L_{y}-1=\frac{1}{2} L_{\frac{y+2}{2}} M_{\frac{y-2}{2}}=\frac{1}{2} L_{\frac{z-1}{2}} M_{\frac{z-5}{2}}, \quad L_{z}-1=L_{\frac{z+1}{2}} M_{\frac{z-1}{2}} .
$$

Via Lemma 2.4 we see $\operatorname{gcd}\left(L_{\frac{z-1}{2}}, L_{\frac{z+1}{2}}\right)=1, \operatorname{gcd}\left(M_{\frac{z-5}{2}}, M_{\frac{z-1}{2}}\right)=2$,
$\operatorname{gcd}\left(L_{\frac{z-1}{2}}, M_{\frac{z-1}{2}}\right)=1$, (because $\frac{z-1}{2}$, and so $L_{\frac{z-1}{2}}$ is odd), $\operatorname{gcd}\left(M_{\frac{z-5}{2}}, L_{\frac{z+1}{2}}\right) \leq$ $M_{3}=10$. These lead to a contradiction via

$$
\alpha^{\frac{z}{4}-0.472}<\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right) \leq 20<\alpha^{2.275}
$$

16. $\boldsymbol{y} \equiv \boldsymbol{z} \equiv \mathbf{0}(\bmod 4)$. In the last case the only possibility is $z=y+4$. We have

$$
L_{y}-1=\frac{1}{2} L_{\frac{y+2}{2}} M_{\frac{y-2}{2}}=\frac{1}{2} L_{\frac{z-2}{2}} M_{\frac{z-6}{2}}, \quad L_{z}-1=\frac{1}{2} L_{\frac{z+2}{2}} M_{\frac{z-2}{2}} .
$$

By Lemma 2.4, we get

$$
\operatorname{gcd}\left(L_{\frac{z-2}{2}}, L_{\frac{z+2}{2}}\right)=1
$$

$$
\begin{aligned}
& \operatorname{gcd}\left(M_{\frac{z-6}{2}}, M_{\frac{z-2}{2}}\right)=2 \\
& \operatorname{gcd}\left(L_{\frac{z-2}{2}}, M_{\frac{z-2}{2}}\right)=1(\text { because }(z-2) / 2 \text { is odd }), \\
& \operatorname{gcd}\left(M_{\frac{z-6}{2}}, L_{\frac{z+2}{2}}\right) \leq M_{4}=14
\end{aligned}
$$

Then we obtain $z<10$ from

$$
\alpha^{\frac{z}{4}-0.472}<\operatorname{gcd}\left(L_{y}-1, L_{z}-1\right) \leq 14<\alpha^{2.004}
$$

Case II: $z \leq 116$. The proof of Theorem 1 will be complete, if we check the finitely many cases $3 \leq x<y<z \leq 116$. It has been done by a computer verification based on the following observation. The equations (1.2) imply

$$
\left(L_{x}-1\right)\left(L_{y}-1\right)=a^{2} b c=a^{2}\left(L_{z}-1\right) .
$$

Thus

$$
\begin{equation*}
\sqrt{\frac{\left(L_{x}-1\right)\left(L_{y}-1\right)}{L_{z}-1}} \tag{3.1}
\end{equation*}
$$

must be an integer. Checking the given range we found that (3.1) is never an integer.

References

[1] M. Alp, N. Irmak and L. Szalay, Balancing Diophantine Triples, Acta Univ. Sapientiae 4 (2012), 11-19.
[2] M. Alp and N. Irmak, Pellans sequence and its diophantine triples, Publ. Inst. Math. 100(114) (2016), 259-269. https://doi.org/10.2298/pim1614259i
[3] A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214. https://doi.org/10.1515/crll.2004.003
[4] C. Fuchs, F. Luca and L. Szalay, Diophantine triples with values in binary recurrences, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. III 5 (2008), 579-608.
[5] C. Fuchs, C. Huttle, N. Irmak, F. Luca and L. Szalay, Only finitely many Tribonacci Diophantine triples exist, accepted in Math. Slovaca.
[6] C. Fuchs, C. Huttle, F. Luca, L. Szalay, Diophantine triples and k-generalized Fibonacci sequences, accepted in Bull. Malay. Math. Sci. Soc.
[7] B. He, A. Togbe and V. Ziegler, http://vziegler.sbg.ac.at/Papers/Quintuple. pdf.
[8] V. E. Hoggatt and G. E. Bergum, A problem of a Fermat and Fibonacci sequence, Fibonacci Quart. 15 (1977), 323-330.
[9] F. Luca and L. Szalay, Fibonacci Diophantine Triples, Glasnik Math. 43(63) (2008), 253-264. https://doi.org/10.3336/gm.43.2.03
[10] F. Luca and L. Szalay, Lucas Diophantine Triples, Integers 9 (2009), 441-457. https://doi.org/10.1515/integ.2009.037

