
Simulation Framework of Autonomous
Robots as ROS basis

Zoltán Krizsán, Szilveszter Kovács

University of Miskolc, Institute of Information Science
krizsan@iit.uni-miskolc.hu
szkovacs@iit.uni-mikolc.hu

Abstract
The Autonomous Robotics is a novel paradigm for handling Human-Robot

interaction. In this area the simulation without hardware is very important.
The goal of this paper is the introduction of possible software framework for
general robot simulation and real-time monitoring. From architectural point
of view the Autonomous Robot software system can be divided into three
main parts, the physical robot platform, the behavior logic and the software
framework supporting and operating the behavior logic on the physical robot.
Due to the flexible ROS architecture the components are interchangeable
hence it is easy to create a new framework for an autonomous Robot. This
paper suggests the Robot Operating System (ROS) based implementation of
the software framework for Ethologically Inspired Autonomous Robots and
presenting the details of components and the cooperation of them.

Keywords: ROS simulation

1. Introduction

Within the robotics area, the task of robot systems can change quickly. If the job
and environmental circumstances change frequently, reusable and reconfigurable
components are needed, in addition to a framework which can handle these changes.
The effort needed to develop such components depends on the programing language,
the development environment and other frameworks used. Many programming
languages can be applied for this process, but developing a brand new framework
is a difficult task. Applying an existing framework as a base system, such as the
ROS in the case of this paper, the associated development tasks can be dramatically
simplified.

Proceedings of the
1st International Conference and Exhibition on Future RFID Technologies

Eszterhazy Karoly University of Applied Sciences and
Bay Zoltán Nonprofit Ltd. for Applied Research
Eger, Hungary, November 5–7, 2014. pp. 93–100

doi: 10.17048/FutureRFID.1.2014.93

93



Frameworks and middleware are gaining popularity through their rich set of
features which support the development of complex systems. Joining together any
robot framework and robot drivers can form a complex and efficient system with
relatively small effort. In many cases, the task of the system designer is reduced to
the configuration of an already existing framework.

On the other hand, when an existing framework requires only a set of com-
pletely new features, it can simply be extended with them. Improving an existing
framework is an easier job than developing a new one because the design and im-
plementation of such a system requires specialized knowledge and skills (design and
implementation patterns). In most cases, the missing functionalities can be simply
embedded into the existing framework, but there are some cases when this is hard
to achieve. An existing framework can be improved simply only in case it is well
designed and implemented. In spite of this, building a brand new system from is
a much longer process that requires much effort. In the area of robotics, there are
many robot parts that share similar features, so the concept of robot middleware
as a common framework for complex robot systems is obvious. Probably there is
no framework which can fulfill all of the above requirements entirely.

The primary goal of the researcher is to find a robot framework in this environ-
ment that is easy to use, reliable and also easy to extend. If it is impossible to find
a perfect one, the secondary goal could be the improvement of an existing one. In
the final case, if no acceptable framework exists, a brand new one would have to
be implemented from the ground up.

There are some main requirements of robot application middleware. First of all
it has to support as loosely as possible coupling of components. The weak build and
running dependency are important because of easy component interchangeability,
parallel development and testing. If the user’s robot system is decoupled then
the members of the team can develop and test the separated part of the project
easily. Second mandatory feature of robot middleware is the hardware and sensor
simulation existence. Third feature should be the existence of command tools
helping the system control and usage. In this paper we explore these requirements
and suggest solutions.

The paper is organized as follows. The main requirements of robot framework
is explored and an overview of robot middleware are given is section 2. In the
section 3 our recommendations are detailed. Application of suggestion is presented
in the section 4. Finally the conclusion emphasizes the advantage of solution.

2. Related work

In this section, some robot frameworks are compared to give a starting impres-
sion YARP, OpenRDK, OpenRTM-aist and ROS systems. Frameworks and robot
middleware are gaining popularity through their rich set of features, helping the
development of complex robot systems.

Definition 2.1. Robot middleware is a software middleware that extends com-
munication middleware such as CORBA, ICE or XML RPC. It provides tools,

94 Z. Krizsán, Sz. Kovács



libraries, APIs and guidelines to support the creation and operation of both robot
components and robot systems. Robot middleware also acts as a glue that estab-
lishes a connection among robot parts in transparent way.

One distributed environment for robot cooperation is OpenRDK. The user’s
robot system can be developed using a set of Agents, through a simple process. A
Module is a single thread inside an agent process. Every module has a repository
in which a set of internal properties are published. Inter-agent (i.e., inter-process)
communication is accomplished by two methods: through property sharing and
message sending. RConsole is a graphical tool for remote inspection and manage-
ment of modules. It can be used as both the main control interface of the robot
and for debugging while developing software. It is just an agent that happens to
have some module that displays a GUI. The framework can be downloaded from
[2].

Another important robot middleware platform is Yet Another Robot Platform
(YARP). Communication in YARP generally follows the Observer design pattern
(for more details see [1]). Every YARP connection has a specific type of carrier
associated with it (e.g., TCP, UDP, MCAST (multi-cast), shared memory, within-
process). Ports can be protected by SHA256 based authentication. Each port is
assigned a unique name and it is registered into a name server. The YARP name
server, which is a special YARP port, maintains a set of records, the keys of which
are text strings (the names of the ports). The remainder of each record contains
whatever information is needed to make an initial connection to a given port.

A third important robot middleware technology is OpenRTM-aist, which is a
convenient modular system also built on the Common Object Request Broker Ar-
chitecture (CORBA). The online component search is supported by the CORBA
naming service, which is a simple process that acts as a servant object that can
be accessed remotely by components as well as the graphical system editor. In
OpenRTM-aist, originally introduced by Noriaki ANDO in [3] (more details about
it can be found in [4]), the software is modularized into components of RT func-
tional elements (called RT-components). Each RT-Component has an interface (a
"port") for communication with other components. The RT system is constructed
by connecting the ports of multiple components to each other in to aggregate RT-
Component functions. The advantage of OpenRTM-aist is that it provides an
simple way to create and co-operate various robot parts. In OpenRTM-aist, many
programming languages can be used for component development, including C++,
Java and Python. Some tools exist to support the development process by auto-
matically generating the skeleton of components. The developer, then, only has to
fill out the generated skeleton source, by concentrating only on the business logic
to be implemented.

The forth robot middleware which has similar approach as OpenRTM-aist is
the ROS (Robot Operating System) detailed in [8]. This system supports the com-
ponents (as previous ones) but it is called nodes. The communication among nodes
can be establish by topics (asynchronous strongly typed message queue) or service
call (synchronous). These two mechanisms are the implementation of lightweight

Simulation Framework of Autonomous Robots as ROS basis 95



dependency. Instead of creating one application containing more objects, several
applications run parallel and sending the operation request as message. One com-
ponent is very small part, easy to understand and test so the development of
component can be delegated to individual member of team. During the implemen-
tation and integration test the messages can be investigated or sent by rostopic
command line utility.

Additionally the system has a graphical monitoring and debugging system which
called rviz and a complete 3D environment for simulation (Gazebo). These two
tools helping visualization the realtime data.

We have chosen the ROS middleware because of the existence of graphical simu-
lation environment, command line tools, and huge number of available components.

3. Suggested topology and Simulation Framework

In this section the design concept of our robot independent Behaviour Engine and
the simulation environment is detailed.

The most important intention of design process is the minimization of depen-
dency among system parts because of the code reusability and testing. If the
application is built from classes depending each other then the result is a big
monolithic executable file with no chance to replace any part of it. Application of
interface leads to a flexible system but the pieces can be changed in the compile
time only. The next step to increase interchangeability is the dependency injection
what uses any descriptor (mostly xml) for relationship definition. Unfortunately,
in case of C++ language this dependency injection is not available due to the
language limits. The next possible solution for lazy system can be the utilization
of design patterns (bridge, strategy, adapter) what solve more structural end be-
haviour problem in gently way. All of previously mentioned solution requires more
programming knowledge and experience and leads to larger source code base inside
one application.

Our suggested solution for the minimal dependency problem is the utilization
of ROS robot middleware and Nodelet ROS package. If the cooperative algorithms
are outsourced to separated nodes only then the communication among them is
expensive because the ROS serializing the message content into XML in the pub-
lisher node and deserializing it in the subscriber node. Without nodelet package
the system works correctly but the information flow becomes slow as a result of
message packaging. That is the problem of strong dependency is solved but a new
one is appeared the performance issue.

Writing our node as nodelet requires minimal code modification. Without
nodelet the initialization of application can be inside the main function or in the
constructor of class. Instead of these standards the user’s classes have to be the
subclass of Nodelet and should override the onInit method.

The second requirement of efficient system in ROS is the communication op-
timization using shared pointer and nodelet. It is very important in case of large
amount of data and frequent calculation such as image processing, people detec-

96 Z. Krizsán, Sz. Kovács



tion and recognition. In normal case the messages are sent as webXML content.
A new possibility is opened with the introduction of nodelet because the nodelet
manager (shipped by the system) loads the participant algorithms into one address
space. Moreover the pieces of application can be implemented as plugin establish-
ing the runtime loading according to user settings. One additional step is required
to exploit this improvement. The advertiser nodelet has to publish the message as
shared pointer i.e. the data is wrapped into a specified class.

Our recommendation is the careful design of layered application into well sep-
arated nodelets and topic based asynchronous communication via shared pointer
messages. The engine of application is implemented in a layer that is a collection
of nodes. In the case of real system, what is running in the robot, the lower layer
providing the real sensor information and the robot behaves according to com-
mands. On the other hand during the simulation or the integration test the lower
layer publishes the sensor values and consumes the commands in virtual space or
mocked entities. In point of view of business logic there is no differences among
these situations and it does not require any modification in source code.

Fortunately the sensor simulation and 3D environment are also exist in ROS
system. There is the Gazebo application introduced in [7] and ROS interface for
Gazebo package to provide complex indoor and outdoor environment for robot
simulation. It contains a lot of robot model yet and it can be extended custom
ones in easy way. It supports multiple physics engine such as ODE and Bullet and
based on OGRE providing realistic rendering (shadow, textures).

The simulation is provided to several type of sensor such as camera, depth
image, RFID, GPS, sonar, laser ray and can be extended by new plugins. Some
of them can be visualized as colour circle or translucent sphere what is very useful
to debug and check for example in case of intelligent space detailed (f.e. in [6]).
Gazebo provides models of many common sensors. In the real world, sensors exhibit
noise, in that they do not observe the world perfectly. For this reason the Gazebo
can add noise to Ray, Camera and IMU sensor.

In order to use custom model (robot or building) we have to define the parts of
tho robot as links and connections of links as joint. Two main feature of link have
to be defined the visual part and the collision. Additionally sensors can be adhere
to the link. This model can be defined in URDF (ROS XML standard) or SDF
(specification of Gazebo). The Gazebo uses the SDF format but the converter tool
exists converting the URDF to SDF.

Because of performance issue we have to minimize the number of links so the
visual and collision property of link should be a complex mesh made by any outer
application. Fortunately the Gazebo supports more mostly used model description
formats f.e. the Collada dae file what can be exported from the Google Sketchup
and Blender.

Simulation Framework of Autonomous Robots as ROS basis 97



4. Robot Independent Behaviour Example as Appli-
cation Example

In the following part of paper deals with the structure of Behaviour Engine con-
trolled robot and the 3D simulation environment construction. A porter robot is
implemented in the basis of Robot independent behaviour engine. This porter ex-
ploring the corridor mainly. If the battery level is decreased to predefined lower
limit then it goes to the recharging station. If any person appears in the corri-
dor (stranger or staff) then the robot goes close to human and explore it. These
behaviours (goto_charger, goto_human, explore) use the official ROS Navigation
component collection i.e. our behaviour system send a new navigation goal if the
appropriate circumstances are meet.

Figure 1: The tiers of behaviour engine system

In the Figure 1 we can see the tiers of the robot independent behaviour engine.
The information is flow from left to right side i.e. the information is occurred in any
component in the inputs tier and the control command is sent to the robot from
the robot reactions tier. The information is converted in every internal tier which
activating the next component. The central logic calculates the robot reaction base
on sparse fuzzy rule base and the observations providing the Logical observations
tier. This central logic is implemented inside the Behaviour engine node. Every
node before this node in the flow provides the information to the decision, and later
nodes perform the appropriate reaction according to outcome. Every node connects
each other via message queue so in the development period we have to send dummy
messages instead of source node and examine the result message. Moreover during
the simulation the information to Inputs are generated by Gazebo and the control
commands are get a Gazebo plugin also.

The plan of corridor of ELTE Etology is shipped as 2D picture. This 2D pixel
based graphics is used as the base of 2D map in ROS navigation and expanded to
3D object in one easy step what is exported to dae file format (Google Sketchup).

The robot model is constructed in URDF file format because the ROS Naviga-
tion package requires the existence of it. The model of other simulation participants
(the stranger and staff human) what is required by the features of behaviour en-
gine are found as free resource on the internet. The Figure 2a shows the Gazebo

98 Z. Krizsán, Sz. Kovács



GUI in which the position and orientation of robot, stranger, staff can be changed,
moreover the laser range is displayed as well.

(a) Simulated environment in Gazebo (b) The visual interface of Rviz

Figure 2: Graphical interfaces of ROS-Gazebo system.

The system can be observed and circumstances can be changed via dedicated
graphical client named gzclient from any Ubuntu based workstation (Figure 2a) or
by the web based client. Futhermore a new web based interface is developed in
which the parameters and additional inputs (f.e. bell, battery level) of our system
are provided. Our solution wraps the official web extension of Gazebo named
gzweb.

In the Figure 2b the environment is presented in point of view of robot. We can
see the footprint of the robot, the piece of map and the lethal zone close to walls
and obstacle which is restricted area to the centre of the robot. In the presented
case in the Figure 2a the stranger is human depicted by Lego man however it is an
lethal area to the robot in the Figure 2b. In fact this obstacle generated cloud is a
goal of navigation in case of goto_human behaviour or unusable part of the map
in the others.

5. Conclusion

The system that is based on ROS robot framework can work efficiently and can be
developed quickly. It is easy to use same logic in case of simulation and production
environment due to ROS flexible concept. The weak dependency amount system
components can be established via ROS strongly typed topics. The simulation of
real robot can be reached using the graphical native and web based client too.
Additionally, the sensors of the robot are simulated such as camera, depth image,
laser in the 3D environment of Gazebo system. The application of ROS and gazebo
is useful for every research team who want to implement the robot system under
Ubuntu operation system.

Simulation Framework of Autonomous Robots as ROS basis 99



Acknowledgements. This research was supported by the Hungarian National
Scientific Research Fund grant no: OTKA K100951.

References

[1] YARP robot middleware website, http://eris.liralab.it/yarpdoc/index.html

[2] OpenRDK robot middleware website, http://openrdk.sourceforge.net/"

[3] Ando, Noriaki and Suehiro, Takashi and Kitagaki, Kosei and Kotoku, Tet-
suo and Yoon, Woo-Keun RT-middleware: distributed component middleware
for RT (robot technology), Intelligent Robots and Systems, 2005.(IROS 2005). 2005
IEEE/RSJ International Conference on, (2005), IEEE, 3933-3938.

[4] Ando, Noriaki and Kurihara, Shinji and Biggs, Geoffrey and Sakamoto,
Takeshi and Nakamoto, Hiroyuki and Kotoku, Tetsuo, Software deployment
infrastructure for component based rt-systems, Journal of Robotics and Mechatronics,
(2011), 23: (3), 350-359.

[5] Nathan Koenig and Andrew Howard Design and Use Paradigms for Gazebo, An
Open-Source Multi-Robot Simulator, IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, Sendai, Japan, (2004), 2149-2154.

[6] Szemes PT, Hashimoto H, Korondi P Pedestrian-behavior-based mobile agent
control in intelligent space, IEEE TRANSACTIONS ON INSTRUMENTATION AND
MEASUREMENT 54:(6), (2005) 2250-2257.

[7] Koenig, Nathan, and Andrew Howard Design and use paradigms for gazebo, an
open-source multi-robot simulator, Intelligent Robots and Systems, Proceedings. 2004
IEEE/RSJ International Conference (2004) 2149-2154

[8] Quigley, Morgan, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng ROS: an open-source Robot
Operating System, ICRA workshop on open source software Vol. 3. No. 3.2. (2009)

100 Z. Krizsán, Sz. Kovács


