
- 2 7 -

TAMÁS FRANCZIA 

AN ANALYTICAL METHOD FOR CALCULATING MULTICENTRE 

INTEGRALS BUILT UP FROM GTF-S I. 

Abstract: In this paper we explain the principles of an analytical method 

for calculating multicentre potential integrals built up from Gaussian 

basis functions. The method is based upon the theory of complex variable 

functions and the Fourier series form solutions of the two dimensional 

Laplace-equation. The multicentre integrals built up from Slater-type ba-

sis functions will be treated in the second part of the paper. 

Note before the introduction: As almost each work from C3 3 to c 12 3 in 

the referred literature contains the principles of the main part of the 

introduction in details we refer to books or articles only in a few cases 

in order to avoid the interruption of the text with references in many 

instances. 

Received on the 20-th of January 1986. 
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Introduction: Let us consider a pair of two valence electrons a quantum 

mechanical system, which is the chemical bonding pair of a diatomic 

molecule. Let other valence electrons not be in the above-mentioned 

chemical bond. It is possible to construct the Hamilton operator of this 

electron pair if we choose the following work-hypotheses of the suitable 

ones. If the other electrons of the molecule are not valence electrons 

but so called core electrons belonging to either one or the other nucleus 

their effect on either of the valence electrons can be taken into account 

together with the influence of that nucleus they belong to. The effective 

potential of a system consisting of a nucleus and its core electrons can 

be expressed approximately with the aid of many pseudopotentials. i±j 

These pseudopotentials can be derived from the statistical theory of 

atoms or from the wave mechanics. ci3,C23,C33 

In the case of a valence electron mentioned above the effect of a nucleus 

and its core electrons on the valence electron can be given - among 

others - with the following pseudopotential form: 

VCrO=V CiO+V Cr), l r s r * 

Z cx_, a 
V. Cr) -£. - Ű 2 

l r r 
2(r 2

+d 2] 2[r 2 +d 2] 

r C D = 2 A tr p exp (-«^r«). 
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In these formulas v l rCr) given by BardsleyEd] is a "long range" pseudo-

potential while Mr is a "short range" one. The "r" variable means 

the distances between the nucleus and the points of the three-dimensional 

space. Zc is the effective number of the elementary positive charges in 

the system of the nucleus and its core electrons. The >ad,clq* 

quantities are atomic constants, p and q are integers. 

The first member of v L r is the effective potential of the nucleus and 

its core electrons affecting on the valence electrons of the atom, when 

it is not chemically bound to another one. The second and third members 

of v Cr) are the consequences of the fact that the atoms chemically 
l r 

bound to each other and having different electronegativities polarize the 

atomic cores of each other, in consequence of which the atomic cores take 

effect on the valence electrons not with a pure Coulomb-type 

pseudopotential, but with a modified potential compared to the Coulomb-

type one. If we put the origin of the system of co-ordinates in the 

nucleus of the first atom the Hamilton operator of the system of the two 

valence electrons has the following form in atomic units: 
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a C2) a (2) 
2 q 

CI) 

is the position vector of the second 

where = (x1,yJ,z1J, 

?
2

= [x2>y2>
z
2)> 

that are the position vectors of the corresponding electrons. 

When the two-electron system is in the n-th stationary state its state-

function having the ri> r
2 position-vectors, the S>, , 

spin-co-ordinates and the t time-variable as arguments can be written in 

the following form according to the non-relativistic quantum-mechanical 

theory of the many-body problem: 

r 2 n v r p ' 
, C2) 

where h is the Planck-constant, En is the energy of the system 

satisfying the following equation too: 
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S < " [ r i> r
2 >

S l' S
2 ]

d T 
C33 

where dr is the volume element in the configuration space of the system 

including the spin-co-ordinates of the electrons. The integral in (3) 

must be taken over the complete domain of all the variables. In the 

integration there is always included also a summation on the spin 

coordinates. [ri »r
2> si»s

2 ] is to be expressed with a linear 

combination of innumerable Slater-determinants of the second order built 

up from one-electron functions of yvCr,s:> type: 

21. ^ ( r i ' r 2 ' S l ' S
2 ) = ^ CL*L ( ri' r2' Sl' S

2] ' ( l a ) 

22. $ = 
Vix(ri' Sl] ViTx[ri>Sl) 

C 4 b ) 

where i denotes the i-th repetitionless second-class combination of an 

innumerable discrete sequence of one-electron s ) functions, and the 

I,II indeces denote the first and the second member of the i-th 

combination of the y(r,s) one-electron functions 
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As [r1,r2,s 1,s2,tj has to be normalized with the norm 1, 

^r1,r2,si ,s2J must also be normalized with the same norm. 

That is why the determinants are to be built up from normalized 

V(r,s) functions. The most general form of these yCr,s> functions 

is the following: 

yCr, s ) = yy+ C r + ifj_Cr)ß , CS) 

where and ^ Cr) have to satisfy the 

 |y/*Cr)y+Cr) + y/*Cr)v_Cr)J d 3r = 1 C61 

CO 

condition, a and ß are the basic spin-functions forming an orthonormal 

function-system. In the spinor representation given by Pauli 

v ő -

The V +Cr) and y_Cr) functions of (4a) are usually unknown. In order 

to reduce the number of the unknown functions in (4a) the y/Cr,s) ones 

are frequently written in the following forms that are less general and 

flexible than the form of V*?,s>in (5): 
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<PßMß 

Let each determinant in (4b) be built up from theVCr,s) functions of 

the form given in (7). Thus the sum in (4a) can contain - among others-

such determinants in which "f>aCl':) - *V3Cr:>*Let <t. and <& be such 
J k 

determinants: 

<p. [?2]«C2> <p. [?J/3C2> 

According to (3) and (4a): 
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r
00 

~ J 2 c* ** H 2 cL # l  = 
l =1 

OO CD 

• J 2 2 c * C l 
 H dr = 

1=1 i=i 

OO OO 

- I I c* ct J H 4>l dr = 
 =1 L=i 

C9I> 

H ®i d T integral in that case when i=j, £=k 

from (8a) and (8b). " 

v. [ r J a C D <p. (rJ/3Cl> 

^ [ ? J a C 2 > ¥>j(?J/3C2> 

^ ( r J a C l ) ^(rJflCl* 
dr: 

 -  . 

CD 
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"\ffo K ] « C í W 2 > ] * £ [lP k[rJ#) k(? ajaCl W2>]dT -

" J h W 2 ) ] * S [ * k ( F j * k [ F j a C 2 W l * ] d T -
CD 

" J h f2]«C2)/3Cl)]^ H [iPk(Fj*k(r Ja<l>0C2>]dr + 
CD 

CIO) 

ao 

Taking into account the fact that the aCl),ßCl) and aC2),ßC2> 

spin-function pairs are separately orthonormal function-systems we get 

from (10): 

J 5 i kdr = 2 | H (?J*>k ( r J J d ^ d V , C I D 

CD OU CO 

H being a sum of operators the right-hand side of (11) is a sum of 

integrals. Let us consider the following member of this sum satisfying 

the "undermentioned equation: 

a .C2) 

 K i ^ k 'J* ^ j 3— 
r 2 = 
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^ J T T -

ad<2> 

C12) 

Let us investigate the first integral-factor in the right-hand side of 

(12). Let and ^k [ ri] be real functions, [ ri] and 

'f>k írij c a n ^ written in the form of the linear combination of 

Gaussian-functions: 

[rJ = 2 c. 

2a 
J-E. exp [- « j J r ^ R j 2 ] CI3a) 

J = 2 
2 a 

•kq 
kcj. exp [- « k q [ r i - R j 2 ] C13b> 

where c . , c. , a. , ct. 
J P k q j p ' kq are real constants. Putting (13a) and 

(13b) in the first integral-factor of (12) we get: 

h N T T T -

a ,C2) 
a 

[ M J X I 
^k[ ri] d 3 ri " 

r 2a. 
3 
4 

K P M J ' ] Í 5 « i P 
exp K P M J ' ] 

oo P 

a (2) 
a 

"kq 

2a 
JL2. exp [- a k q ( r 1 - E j 2 ] d ! C14) 
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This integral is also equal to a sum of integrals. The general member of 

this sum is the following: 

h 
4 C. c, 

P kq 

4a. a. ip k<» exp 

a,C2> a 

[ M j ' - a * 
CIS) 

In this part of the paper we want to give a method for the beginning of 

the calculation of this integral. 

Treatment: First let us express the exponent with the components of the 

R p a R q , r i vectors: 

 T 

It will be sufficient to investigate in details only the members of (15) 

depending on x. because the members depending separately on x., y., 
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or z^ have the same structure. 

a. f x -x 1 2 - a , fx - x l 2 = -a. Í X 2 - 2 X x +x2l-a^ f x 2 - 2 x x +x2l 
J P l P 1J M l q J p l P p i t J kq L q q 1 lj 

= - fa. X 2 - 2a. X x + a. x 2 + a, X 2 - 2a, X x, + a, x2l = I. J P P JP P 1 J p l kq q kq q 1 kq lj 

= -ffa. +a 1 x 2—2 fa. X X ]x +a. X2+a, X21 = 
LI. JP kqj i L JP P kq qj i jp p kq qj 

2 fa. X +a, X 1 
r ^ I L J P P kq q J 

= - a +a 
I J P kqj a. +a, 

j p kq 

a X +a XJ 
J P P k q q 

a. +a, j p k q 

= - | a . +a, 
I j p kqj 

a. X +a, X 
J P P k q q 

a +a. j p k q 

a. X +a X^ 
J p P k q q 

a +a. 
J P kq 

a. X +a, X j p p kq q 

a. +a, 
J P KQ 

= - fa. +a I 
I JP k q ) 

a. X +a, X 
J p P k q q 

a. +a, 
J P k q 

fa. X +a X 1 
I J P P kq qj 

a. +a, 
J P kq 

- fa. X 2 + a X21. C17> 
I J P P kq qj 

Now we can see that introducing the 
a. X +a, X 
j p p k q q 

< = X — — C18a) 
a +a, 
J P kq 

a. Y +a Y 
J P P kq q 

n = y - _ — — C18b3 
a +a, 
J P k q 
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oc. Z +a, Z 
J p p k q q 

^ - Z - C18c) 
1 a. +a, 

J P kq 

arguments in place of ( X, , the exponential function factor in 

the integrandus is to be written in the 

exp [- [a j p+a k q] (<2+7?2+<2] form. 

The integral in (15) expressed with the arguments gets a 

constant multiplier in front of the sign of the integration: 

exp 
fa. X +a. X ]2+ía. Y +a, Y ] % f a Z +a, Z 1 
I J P P kq q j I JP P k q qJ I JP P kq q j 

a. + a, 
J P kq 

ia. X2+a X 2] - fa. Y2-*-a. Y 2] - ía. Z2+a, Z 2 ] 
L J P P kq q j I JP P k q qj I J P P kq qj 

rising only from the (17) expression of the exponent because from (18) we 

get the 
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dx í 

. ( 1 o b 5 dz =dí; C19c) 
C19a), dy^dr? C19bJ, ± 

equations not giving constant multipliers to be written in front of the 

sign of the integration. 

Introducing the 

i 

f l 2 ^ C20a> 

i 
h p 

i 

(20b> 

<20c) 

arguments in place of Kf^^K the form of the exponential factor i 

the integrandus will be simpler: 

exp [-[K *)• 

From (20) we get: 
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d< = C21 a) 

_ 1 

dr, = [ a j p + a k J ~ W C21b) 

_ i 

d < = h p + a k J C 2 i c : > 

Taking into account (18) and (21) we can write: 

__ i 

d X i = h p + C , k q ] ^ C 2 2*> 

1 

d y i = ( a i p + a k j ^ C 2 2 b ) 

_ 1 

(21) gives another constant multiplier accompanying to the first one 

mentioned between (17) and (18): 

fa. +« 
I J P k q j 

Now let us transform the "polarizational" part of the integrandus. Its 

original form is: 
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a, C2> a,C2) 
. a d 

[ M J «:] [(*.-".) •(*.-'.) -C8,-.) «;]' 
C 2 3 3 

Applying the 

f ct. +a 
I J P kqJ 

a X +a, X 
J P P kq q 

a. +a. 
J P k q 

C24a) 

^ [°jP+akq] 

a Y +a, Y 
j p p kq q 

a. +a, 
J P k q 

C 24b) 

a. Z +a, Z 
J P P kq q 

OÍ. +a, 
J P kq 

C24c) 

formulas rising from (18) and (20) in (22) we get for the right side of 

(23): 
a, (2) 
a 

X
2 - V c T +a, 

r j p kq 

. a X +a, X 
^ , .1 P P k q q 

T c T +a. ' 
y j p kq J 

« A Ö ) 

T J p k q 

, a Y +a. Y 
, + .1 P P iL2__a 

_/ a . +a , * j p k q 
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a, (2) d 

1 , ex. Z +a. Z 
2 

— £ +—LE_P ct Q + rl2 
- y a. +a • 

L ' J p kq -J a. +a. 1 * J p kq 

Multiplying (25) with exp 2 + r ) 2+K 2 J J w e ^ o r m 

integrandus expressed with the < >< arguments and not containing 

any constant multipliers in front of the sign of the integration. Further 

on we will disregard the constant multipliers because it is possible to 

expound the principles of the beginning of the calculation disregarding 

them. 

The integration in (15) was ri - type and we have 

OD 

transformed it to the jFCp)d3p form, where p = , rj J, d 3p = 

CD 

d< . dr? - d< i TK<2 JVcp) d p integration means simple integrations 

OO 

on the <',17',*;' arguments from -co to + cd in each case. It is 

allowed to begin the integration with that variable we want to, because 

the limits of the three single integrations are constants. So let us 

begin with the integration on j*' .In this case the two other variables 

are to be considered as constants. The form of the integral on <i s the 
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following: 

tC2) exp [-(V 2
+i;' 2]]ex P 

X2~ 
T j p kq 

, a. X +a, X 
K + l l p p q q 

I v ^ T T ^ k q 

d^ (26) 

+d 

where 

i' 2 

-/a" +a, 1 
T J P kq 

, a. Y +cx, Y 
ry + ,i P P k q q 

___ — I 
T J P kq 

Z2-
y J P kq 

K + 

a. Z +a, Z 
,1 p p kct q 

y J P kq 

+d d' C27> 

Let us introduce the following notations: 

1 a X +a, X 
F def. - - ; C28a), V def. L£L-£ LSLJl C2Bb) 

7 a , +a ' x a +a 
f J p k q J P k q 

Using these notations the integral in (26) has the following form: 



- 45 -

- g d C 2 ) e x p [ - ( , 2 H > 2 ) ] e x p [ - ^ 2 ] ^ 

. [ K " ^ ' + F x] 2 + d' 2] 2 

Let us introduce the # notation with the following definition: 

& ~ x
2

+ Fx » With this notation the integral in (29) can be 

written in the following form: 

3 ctdC2)exp ] 
H [V2-K'2] Í] exp 1 

K 1 I 

1 [1 • rí'] I2+ 
I2 

-»oo 

First we have to solve the problem of the calculation of the integral of 

the following-type: 

exp j [ - Í ' 2 ] I 

1  - r? I2 + d' 
I 2 

If we solve the problem of the calculation of this integral, then 

multiplying the result with exp 1̂7' 2+t; ' 2jj we can continue the 

integration on 17' or in the other case on y . Now let us deal with the 
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integral in (31). This integral can be calculated approximately with 

the method of the numerical analysis. In this case we ought to apply the 

Hermite-Gauss integration formula approaching the value of the integral 

with a sum. With this technique we could calculate the original • • d 3r 
CD 

integral applying the Hermite-Gauss-forrnula three times. But in this 

article we want to explain the beginning of an analytical method. 

In mathematics one of the methods for calculating definite real integrals 

is based upon the so-called residuum-theorem of the theory of complex 

variable functions. In some cases we can use a simpler form of this 

theorem, the Cauchy-theorem. Let us begin with showing the possibilities 

and the conditions of applying Cauchy's theorem for calculating definite 

real integrals. 

Let z = x+y=T-\ y = x+iy, where x,y are real numbers, x is 

the real part of z while iy is the imaginary one. Consisting of two parts 

z is called a complex number. The complex numbers can be described as the 

vectors of the complex Gauss-Argand number-plane: 



 -

I f Z 2 = X 2 ± i y 2 ' L h e n 

zx ± z 2 = ^ ^ ^ ( y t ^ ) . 

• z2 = = 

= x i x 2 + i x i y 2
+ i y i x

2 - y x y 2 = 

= [ xi x
2-yiy 2] - i( xty a

+ x ayi) 

according to the definitions of the summation and the multiplication of 

complex numbers. 

Let f(z) be a function of z projecting the complex number-plane onto 

itself. As the values of f(z) are complex numbers f(z) consists of a real 

and an imaginary part: 

fCz) = utx,y)+ivCx,y) , 

C32a) 

C32b) 

where u(x,y) and v(x,y) are real functions, 
b 
J fCz)dz means a complex integral of the f(z) function that must be 
a 

taken on the complex number-plane along the G curve between its a and b 

points: 

b b 

J fCz)dz = J ju(x,y)+ivCx,y}IdCx+xy) = 
a a

L J 
 a 3  o 3 

b b 

= J [uCx,y)+ivCx>y)Jdx + f [uCx,y)+ivCx,y>JdCiy) = 
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b b b b 

J* uCx,y)dx+i J vCx,y>dx+i J" uCx,y)dy- J vCx,y)dy= 

CG) CG) 

u o 
= J juCx,y)dx-vCx, y)dyj+i J |uCx, y)dx+vCx, y)dxj , C34) 

where we have used (32a) and (32b). 

It is to be seen that a complex integral of a complex variable function 

can be calculated with the aid of real integrals. 

Let G be a closed curve of the complex number-plane and let f(z) be 

analytical on the set consisting of all points of the closed G curve and 

also in all points of the region of the plane bordered by this curve. In 

this case 

<£ fCz)dz = 0. 

C GD 

C35) 

This is Cauchy's theorem. The analyticy of f(z) on a set means that 

f Cz) l i m 
h —* O 

fCz+h)-f(z) 
v* + C3Ó) 

exists in each point of the set, where h means complex numbers. The 

operation defined in (36) is called the complex derivation of f(z). 
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Cauchy and Riemann have proved that f'(z) exists in the z point only in 

1 1 1 . r. •• <?U ÖV 

that case if the cTy> partial derivatives exist in this 

point and satisfy the so-called Cauchy-Riemann equations: 

How can we calculate/ fCx^dxusing Cauchy's theorem? First we have to 

write z in place of x in f(x) then we have to form the fCz)dzintegral 

along a closed G curve containing the ta,b] interval of the x-axis. If 

f(z) is analytical along G and within the region of the plane bordered by 

G we-can write using (35) and the z=x,if y=0 equation: 

§ fCz)dz = J fCz)dz + J fCz)dz + . . . + J fCz)dz + 

_ dy <3u 
Cx C)y ' cjy 

d\i _ Öv rn'y^ 

~ cK C 3 7 ; > 

b 

CL 

b z 

+ J fCx)dx + . . . + J fCzDdz = O 
n 

C38} 
z n-1 

CG 

where G . U G 2 U . . . UAku ... uta,bi u ... ua 
n - 1 Q. 

(U is the sign of forming the union of sets.) 

If we can calculate the values of the integrals of the sum in the 
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b 
right-hand side of (36) exceptJ fCx>dxwith simple analytical methods, 

a. 

the (38) equation gives us an analytical formula for the value of 
b 
J fCx)dx. 
a. 

The application of this method and that of the two-dimensional Laplace-

equation for the calculation of the integral in (31) will be treated in 

the second part of this paper. 
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