- 97 =

TAMAS FRANCZIA

AN ANALYTICAL METHOD FOR CALCULATING MULTICENTRE

INTEGRALS BUILT UP FROM GTF-S I.

Abstract: In this paper we explain the principles of an analytical method
for calculating multicentre potential integrals built up from Gaussian
basis functions. The method is based upon the theory of complex variable
functions and the Fourier series form solutions of the two dimensional
Laplace-equation. The multicentre integrals built up from Slater-type ba-

sis functions will be treated in the second part of the paper;

Note before the introduction: As almost each work from [31 to[121 in
the referred literature contains the principles of the main part of the
introduction in details we refer to books or articles only in a few cases
in order to avoid the interruption of the text with references in many

instances.
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Introduction: Let us consider a pair of two valence electrons a quantum

mechanical system, which 1is the chemical bonding pair of a diatomic
molecule. Let other valence electrons not be in the above-mentioned
chemical bond. It is possible to construct the Hamilton operator of this
electron pair if we choose the following work-hypotheses of the suitable
ones. If the other electrons of the molecule are not valence electrons
but so called core electrons belonging to either one or the other nucleus
their effect on either of the valence electirons can be taken into accoun
together with the influence of that nucleus they belong to. The effective

potential of a system consisting of a nucleus and its core electrons can

be expressed approximately with the aid of many pseudopotentials. (13

These pseudopotentials can be derived from the statistical theory of
atoms or from the wave mechanics. 11,121,031

In the case of a valence electron mentioned above the effect of a nucleus
and its core electrons on the valence electron can be given - among

others - with the following pseudopotential form:

Vird=V, (rX+V ()
Lr sr

>
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In these formulas v, Cr> given by Bardsley[41is a "long range" pseudo-
potential while Wy is a "short range" one. The "r" variable means
the distances between the nucleus and the points of the three-dimensional
space. ZC is the effective number of the elementary positive charges in
the system of the nucleus and its core electrons. The d,% ,0,,0,,4
quantities are atomic constants, p and g are integers.

The first member of Vv, , is the effective potential of the nucleus and
its core electrons affecting on the valence electrons of the atom, when
it 1is not chemically bound to another one. The second and third members
of vV (D are the consequences of the fact that the atoms chemically
bound to each other and having different electronegativities polarize the
atomic cores of each other, in consequence of which the atomic cores take
effect on the valence electrons not with a pure Coulomb-type
pseudopotential, but with a modified potential compared to the Coulomb-
type one. If we put the origin of the system of co-ordinates in the
nucleus of the first atom the Hamilton operator of the system of the two

valence electrons has the following form in atomic units:
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where R, = sz’y .z ] is the position vector of the second
2 2
nUCleUS, r1 — I;il N I‘2 — I;zl Where 1‘1 = [xi,yl)zl)>

r, = [xz,yz,zz],

that are the position vectors of the corresponding electrons.

When the two-electron system is in the n-th stationary state its state-
function having the ;1> ;2 position-vectors, the Sy S,
spin-co-ordinates and the t time-variable as arguments can be written in
the vfollowing form according to the non-relativistic quantum-mechanical

theory of the many-body problem:

= = = = 2n7r-1
v [r1,r2,s1,sz,t,] =y [ri,rz,si,szl exp [— —E——Ent], 2>

where h is the Planck-constant, En is the energy of the system

satisfying the following equation too:
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» e -— - - 3D
E = f U [rl,rz,si,sz] H ¥, [r1’r2’s1’52] dr ,
a0

where dr is the volume element in the configuration space of the .system
including the spin-co-ordinates of the electrons. The integral in (3)
must be taken over the complete domain of all the variables. In the
integration there is always included alsc a summation on the spin
coordinates. ¥ [;1’;‘2’31»52] is to be expressed with a linear

combination of innumerable Slater-determinants of the second order built

up from one-electron functions of w(r,s> type:

21. ¥n [rx’rz’s1’sz] = E Ct‘bi. [r1’rz’s1’92] 4 (4a>
L=1
w;x(rﬂsi wi.l:x[r1’s1
22. tbi_ = C4bd
wLI rz’sz wi.II[ 2’52

where 1 denotes the i-th repetitionless second-class combination of an
innumerable discrete sequence of one-electron y(r,s> functions, and the
I,IT indeces denote the first and the second member of the i-th

combination of the y(r,s> one-electron functions
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As  y [;1’;'2’51’52’t’] has to be normalized with the norm 1,
¥, [;1,;2,51,82] must also be normalized with the same norm.

That is why the ®. determinants are to be built up from normalized
w(T,s> functions. The most general form of these ¥<T,S> functions

is the following:

y(T,sd = y (Fda + y (rd3 , 5>

where ¥,C(r> and w (> have to satisfy the

J [w:(F)w+cF> + w’fc;m_ci:)] d3r = 1 6>
a©

condition, a« and 3 are the basic spin-functions forming an orthonormal

function-system. In the spinor representation given by Pauli

The w,<r> and w_<r> functions of (4a) are usually unknown. In order
to reduce the number of the unknown functions in (4a) the w(r,s> ones
are freguently written in the following forms that are less general and

flexible than the form of w<T,s>in (5):
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pa(F)a
Cr = =
y(r,sd PB(P)ﬁ

Let each determinant in (4b) be built up from the ¥<r,s> functions of
the form given in (7). Thus the sum in (4a) can contain - among others-

such determinants in which ®oCT> = @3C(rY et ¢, and & be such

determinants:

pj[;1]a(1) pj(Fi]ﬁ(i)
& =
: e s (8ad
J >
pj[rz]a(Z) pj[rz]ﬂ(ZD
pk[Fi]a(l) pk[51]3<1>
[+ =
% - - : (8b)>
pk[era(Z) pk[rz]ﬁ(Z)

According to (3) and (4a):
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Let us examine the _[ ¢ H ®# dT jntegral in that case when i=j, &=k

ao

from (8a) and (8b).
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j[«o [r ]p ]a(i)/’su)] H [pk [r ]pk( 2]0:(1);3(2)]017 -

I[p (r ]p ]au)ncz)] H [pk [r ]pk [r ]a(Z)B(i)]dr -

_J'{pj [;1]4pj [;2]01(2)(3(1)]* H [pk [Fl]pk [;z]au).a(z)]dr +

10>

“}p ]p [r ]acz)(acn] [ e, [I«’ka [;2]a(2)(3(1)]dr

Taking into account the fact that the aC1),3C1) and al2),3(2>

spin-function pairs are separately orthonormal function-systems we get

from (10):
J.d’; ’l; der =ZJ Jp: [Fijgp: [;2} ’l; {wk {;1]‘Pk [;2]]d3;1d3;2 11>
a (v s T » o]

H being & sum of operators the right-hand side nf (11) is a sum of
integrals. Let us consider the following member of this sum satisfying
the "undermeritioned equation:

f Jor e, (7. T PAAI AL A

. [&.- J+dz

a4 .
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ad(2)

:jpj [ri] —————— pk d r .Jp ]d T, 12>
o [[Rz—ri] *d ]

Let us investigate the first integral-factor in the right-hand side of
§12). Let #; E;1] and ¥y EF1] be real functions. ¢, [;,] and
Py EF1] can be written in the form of the linear combination of

Gaussian-functions:

pj[Fi] =3 ijfing]; exp [— ajp(;l—ﬁp]z] (13a)

3
2a 4 2
e i = -
Py [1‘1] = 3 qu[m—g] exp [— ¢:xkq[r1 Rq] ] C13bd
q
where €552 Rg? Ry 52 Ty are real constants. Putting (13a) and

(13b) in the first integral-factor of (12) we get:

By

&y 2>

3
20, |4 — = Y27 .=
> €k q T exp [— akq[ri—Rq] ]d r,. 14>
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This integral is also equal to a sum of integrals. The general member of

this sum is the following:

3
.J' da. Gk 4 o _ 2 . - 2
©ipkaq nz exp '_[aip[Rp—rl] +akQ[Rq_r1] ] :

| Lo ¢

daFi. 15>

In this part of the paper we want to give a method for the beginning of

the calculation of this integral.

Treatment: First let us express the exponent with the components of the

R ,R,r
Rp' q’" 1 vyectors:

oo BF) g B F) Loy (e ) T (v ) (22 )

2 2 2
~akq[[xq—x1} +[Yq—y1] +E2q—z‘) ]. 16>

It will be sufficient to investigate in details only the members of (15)

depending on X1 because the members depending separately on X1s ¥p»
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or z. have the same structure.

1

2

2
- - - = - 2__ 2] 2_ 2}~
ajp[xp xl} akq[xq xl] djp[xp 2pr1+x1] akQ[xq 2qu1+x1]

=—-[cx. X% - 2a. X x, + a. xZ +

o
Jp P jp p 1 ip 1 kq' g k

2 2
- + =
X 2a qu1 o, xi]

il

2 2 2
-lla. +a X —2[&. X + X ]x +a, + ]=
[[ ip kq] 1 PR R N PRI &y 0Xg

X a. X3+a, X*

i 2[0(. X +a
, Cipp "ka'q ipTp kg a 1
= ~la, o ] x = x, * =
P 4 a. +a a. +o
ip kq ip ka
i a. X +a, X 2 a. X2+a, X2
ip p ka a ipp ka g
= -—{a. oy ] X, = + -
I P q o. +ao o, to
L ip kg ip kaq
o, X +a X 2 a. X +o, X 2
p p kg k q
= = -[a *o, ] X, = +
o, +a 1P q 1 a, +a
ip kaq ip ka
P
[a X +a, X ]
p kg q 5 =
+ - [ . X° + a X ] 17>
ipp kg q

Now we can see that introducing the

a. X +a, X
ip p ka q
o. +

ip ka

a, Y +a, X
_ i p ka' aq
n=y, P C18b)
ip ka
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(18c)

arguments in place of X4;¥% ; Z4 the exponential function factor in

the integrandus is to be written in the

exp [— Lajp+akq] [&2+n2+(2] form.

The integral in (15) expressed with the €,n,L, arguments gets a

constant multiplier in front of the sign of the integration:

2 2
+ . + Y] +[. 2 +a, 2 ]2
[éjpxp+akqxq] [aJPYP akq q aJP p kg q
exp ¥

a. + o
ip kq

- 2 2) _ 2 2) _ 2, 22]
Egjpxp+akqxq] [aijp+aquq] [ajpzp “kqq

rising only from the (17) expression of the exponent because from (18) we

get the
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=dr (19c?
dx1=d& (19ad, dy1=dn (19bd, dz 4

equations not giving constant multipliers to be written in front of the

sign of the integration.

Introducing the

1
= 2 (20a>
&= [ajp+akQ] 5
i
Y= = C20b>
n- [gip+akQ] 1
1
* 2 €200
L= [0‘,- p*o‘kq} % ©
arguments in place of £,k the form of the exponential factor in

the integrandus will be simpler:

exp [" [’f' 2en 240 2] '

From (20) we get:



. ==
= o >
d [o.J p+akq] ax (21a
= "2
dn [mJ vy ] dn €21b>
1
.
= >
df [ch p+°kq] dy (21c

- T2 o
dxi- [aj p+akq] d& (22ad
=2
= + 2 :
dy1 (aj o akq] dn (22b>
- T24y”
dzx [c:j p+akq] dr 22c)

(21) gives another constant multiplier accompanying to the first one

mentioned between (17) and (18):

a. +o .
[ Jp kq]

LMTA)

Now let wus transform the "polarizational" part of the integrandus. Its

original form is:
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cxd(Z) adcz)
— _ 2 12 z 2 T 233
[(Rem) +az] [(a=) + (rava) +(2e=,) +ed]
Applying the
| o(.!pxr;"alc<qxca 1
£ = [a. +ou, ]2 x, - 24ad
ip al «. +a
. ip "ka J
1 [ a Yp+aquq 1
- 2
n= (0'- a ] Yy~ €24b>
ip Tka 1 5.
. ip kg y
1 [ a.pr+aqu A
g = [a. +or, ]2 z,~ 24D
1P q a. +a
. lp kq J

formulas rising from (18) and (20) in (22) we get for the right side of

‘ a, (2

(23): . d

1 . a X _+o, X - :
X,~ g +—ip_p a’q +
s -+
%ip %kq % p %%q
o, (D)

1 + 2

+ |y n’+ajpyp aquq

2
a. +a J o, _Fa '
ip kg ip ka
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o, €2)
28)
1 a2 +a, 2 |32 2
+zz—a+a [t:+,1pp ka—q + g2
ip" “ka % p %% q

Multiplying (25) with exp [- [.«:‘2",‘ 2+<'2]] we get the form of the
integrandus expressed with the &‘,17',(’ arguments and not containing
any constant multipliers in front of the sign of the integration. Further
on we will disregard the constant multipliers because it is possible to
expound the principles of the beginning of the calculation disregarding
them.

¢ —

= 3
The integration in (15) was J}‘[P1]‘i r - type and we have

Qo

transformed it to the JFCB)dSB form, where p = [{' .n ,('],d:’ﬁ =
©

dg’ .dn .dg’y The _[FCB)dGB integration means simple integrations

on the & ,n ,¢’ argu?noents from - o to + o in each case. It is

allowed to begin the integration with that variable we want to, because

the 1limits of the three single integrations are constants. So let us

begin with the integration on ¢° . In this case the two other variables

are to be considered as constants. The form of the integral on £ is the
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following:
e 2> B ei® B .
@ o [l e YJers [
dg” 26>
1 . o, X +a, X 2 2
Xz— £ +-lB_P ka_g +d” 2
- .+
@®© Ol“p akq ajp+akq
where
- 1 a, Y + Y =
2 _ . : (o]
d = Yz —— n +—lB_P kg g &
ip “kq %5 % q
1 o 2 +a, 2 =
rd . 2 .
+ 22 ——— g +—lB_P kg g +d? = g2 27>
ir %kaq % i Mg

Let us introduce the following notations:

1 . X +a, X
I def. (28a>, I, def. - —iB-B ka 3  (28m
e T cel
v ip "kq ajp+akq

Using these notations the integral in (26) has the following form:
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N B ) s S IR
dg
% 2 ‘212
[[X2 -rg 4 rx] * ]
-0
Let us introduce the g notation with the following definition:
& =X, + T With this notation the integral in (29) can be

written in the following form:

re ad(Z)exp [— [n' 2+(' 2]]exp [—t' 2]

[ =) T

ag’ 30>

First we have to solve the problem of the calculation of the integral of

the following-type:

e ew ]
d
| oy

If we solve the problem of the calculation of this integral, then

multiplying the result with exp [—(q'zﬁig'z]] we can continue the

integration on #»" or in the other case on 3’ . Now let us deal with the
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integral in (31). This integral can be calculated approximately with
the method of the numerical'analysis. In this case we ought to apply the
Hermite-Gauss integration formula approaching the value of the integral
with a sum. With this technique we could calculate the original i ++.d°%r
integral applying the Hermite-Gauss-formula three times. But in this
article we want to explain the beginning of an analytical method.

In mathematics one of the methods for calculating definite real integrals
is based upon the so-called residuum-theorem of the theory of complex
variable functions. In some cases we can use a simpler form of this
theorem, the Cauchy-theorem. Let us begin with showing the possibilities
and the conditions of applying Cauchy's theorem for calculating definite
real integrals.

Let z = x+7V=1 .y = x+iy, where x,y are real numbers. x is
the real part of z while iy is the imaginary one. Consisting of two parts

z is called a complex number. The complex numbers can be described as the

vectors of the complex Gauss-Argand number-plane:
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If zl=x1iiy1, zz=x2iiy2, then

z, * z, [xizf:xz]ti [yiztyz], 32ad

Gy ¢ By = [x1+iy1]‘ [x2+iy2] =

+1 +i - =
x1x2 1x1y2 lyixz y1y2

[xlxz-yiyz] + i[x1y2+x2y1] C32bd

according to the definitions of the summation and the multiplication of
complex numbers.

Let f(z) be a function of z projecting the complex number-plane onto
itself. As the values of f(z) are complex numbers f(z) consists of a real

and an imaginary part:

fCz) = ulx,yd+ivix,yd ,
(33)

where u(x,y) and v(x,y) are real functions.
{ £(z>dz means a complex integral of the f(z) function that must be

Yaken on the complex number-plane along the G curve between its a and b

points:

b b

J £Czddz = | [u(x,y)+iv(x,y)]d(x+iy) =

a a

(G) . Q)
b b

= [u(x,y)+ivcx,y)]dx + [u(x,y)+iv(x,y)]d(iy) =
[¢8
(G) (;)
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b b b b
= [ ulx,yddx+i [ v(x,yddx+i [ ulx,yddy- [ v(x,yddy=
a a

a a

(G (G (G) g
b b

= f [u(x,y)dx—v(x,y)dy]+i J [u(x,y)dx+v(x,y)dx], 34D
a a
@ <G>

where we have used (32a) and (32b).

It is to be seen that a complex integral of a complex variable function
can be calculated with the aid of real integrals.
tet G be a closed curve of the complex number-plane and let f(z) be

analytical on the set consisting of all points of the closed G curve and

also in all points of the region of the plane bordered by this curve. In

this case

$ £(zddz = O. (35>
(G

This is Cauchy's theorem. The analyticy of f(z) on a set means that

- flz+h>-f(=z)
& M + oo 36>
h

’ 1
lf‘ <zd W

i
-—

exists in each point of the set, where h means complex numbers. The

operation defined in (36) is called the complex derivation of f(z).
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Cauchy and Riemann have proved that f'(z) exists in the z point only in

. e 3 a a ; ; : . ; :
that case if the a';':', a§ ai', a';-, partial derivatives exist in this

point and satisfy the so-called Cauchy-Riemann equations:
Gu _ dv Gu _
gx “ 3y » Ty T ox 37
b
How can we calculate [ f(xDdxusing Cauchy's theorem? First we have to
a
write z in place of x in f(x) then we have to form the fCzd>dzintegral
along a closed G curve containing the La,bl interval of the x-axis. If

f(z) is analytical along G and within the region of the plane bordered by

G we- can write using (35) and the z=x,if y=0 equation:

-4 >4

2 3 T +1
$ £Czddz = [ £lzddz + [ fCzddz + ... + [ fCzddz +
(G2 z1 22 zk
(01) (02) (Gk)
b z,
+ J fxddx + ... + [ £Czddz = O, 38>
@ zn—l
G _,?
where G,uU6,U ... UG U ... ULla,bl U ... u@g = G.

(U is the sign of forming the union of sets.)

Jf we can calculate the values of the integrals of the sum in the
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b
right-hand side of (36) except | fcx>dxwith simple analytical methods,
a

the (38) equation gives us an analytical formula for the value of
b
J f£xddx.

a

The spplication of this method and that of the two-dimensional Laplace-
equation for the calculation of the integral in (31) will be treated in

the second part of this paper.
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