ANATOL NOWICKI

COMPOSITE SPACETIME FROM TWISTORS AND ITS EXTENSIONS

ABSTRACT: The wmain ideas of the ¢twistor and supertwiator
descriptions of spacetime and superspace in D=4 and D=6
dimensions are considered briefly from a didactical
point of view. Ve underline also the role of complex
twistor formalism for D=4 and the quaternionic twistor

degscription for D=6 dimensions.

1. Introduction.

The theory of twistors has been formulated by Roger Penrose
{11 in order to unify the gquantum mechanical and +he -spacetime
descriptions of Nature. It is well known that gquantum mechanics
deals with mathematical methods based on the complex structure of
a Hilbert space of physical states (the probability amplitudes are
the complex numbers). On the other hand, the theory of relativity
demands the spacetime points to be described by real fourvectors
(the coordinates of the spacetime events are the real pumbersd.
The difficulties in a cansistent formulation of a relativistic
quantum theory are immediately related to this fact.

The main idea of the twistor theory is to treat the real
coordinates of spacetime points as composed gquantities of the
complex objects so called twistors. Therefore, in the twistor
theory the most fundamental objects are the twistors instead of
the real spacetime points.

Mathematically +twistors are the conformal 0(4,2) spinors



i.e. the complex fourvector in the fundamental representation of a
covering conformal group SUC2,2) =~ UCZ,2). A correspondence
between the twistors and the spacetime points is giveh by the
incidence equation - Penrose relation.

The twistor formalism formulated originally by Fenrose for
the four — dimensional (D=4) spacetime can be extended in two
ways:

i) extending the Penrose—relation in a supersymmetric way one
obtains a correspondence between the supertwistors and the
points of D=4 superspaces [(2,3],

iid replacing the complex numbers by gquaternios in the FPenrose
relation one can bring the quaternionic twistors into
connection with thepointzs of the D=6 spacetime (41].
Furtheron, one can extend this quaternionic twistor
formalism supersymmetrically introducing quaternionic

fermionic degrees of freedom.

2. Composite Dm4d spacetime from twistors.

Let us consider the fundamental steps in a more didactical
way leading to the formulation of the Penrose-—relation.

It is well known that any spacetime point described by the
fourvector x=(x%,x',x?%,x®) can be brought. into connection with a

hermitean 2x2 dimensional matrix, using the Pauli matrices o
a 1

o s 2
X — X = [X*X ""1"]=x”a 1)
[ 1 2 ,0_.3 7]

X +ix
this correspondence is one to one.

One can also consider the complex fourvector z=(z°,z‘;22,za)
instead of the real one x. The complex fourvector =z describes a
point of the complexified Minkowski Space (M*. A similar relation
to (1) gives us the correspondence between the points of «i*  and

two dimensional complex matrices:
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Z m—— 2= z”ap 2

One can get to the real Minkowski space [M* by putting the resality

condition onto the complex matrix 2 i.e.
+

Z ——— if 2 = 2 C3d
where Z% denotes a hermitean conjugated matrix.
A point in the twigtor construction is the use of

isomorphism between complex two dimensional matrices 2 and Z-plane
in a fourdimensional complex vector space C'- the twistor space
U=C*. This isomporphism is given by the following correspondence
[5]1:

2 —s {éubspace spanned by columns of 4x2 matrix [%Z]} 4>
z

or more explicitly, the 4x2 matrix columns are identified with two

twistors Ti,'r2 e T :

iz%+iz® =224+jz?
i 2| _ |izl-=z2 izP=iz3| _
[Iz ] = " " = CTi’Tz) C4ad
0 1

From a mathematical point of view the corregpondence Cd).gives an
affine system of coordinates for the Z2—-plane in the twistor space
T. This subspace is a complex Grassmann manifold 02.4(63, In other
words, the Z-plane is given by the +two linearly independent
twistors Ti,T2 e T. ”

Therefore, the relation d4) gives us the correspondence
between the complexified spacetime point z € @M* and a complex
Z2-plane in the twistor space T.

On the other hand, there is not a unique relation between the
pair of twisgtors (T, ,T_ ) and the Z-plane generated by this pair.
It is
clear, that every pair of twistors (T;,Ta) ig related to a
nonsingular 2x2 matrix as follows.

(T;,Tz> = (T, T, OM - ' 8

gives the same Z—plane in the twistor space T.



Let the pair 'CT;,Ta) has the form <d{4ad, therefore any
equivalent pair of twistors satisfy

izl _ _ lom iZ
[12 ] = (Ti’TZ)H = [ﬂ M] = 12

OM
M C6a)d

ni

where the 2x2 complex matrices 0,I1 are constructed of the
coordinates of the twistors T ,T,.
Therefore, we obtain
iz = an~* & 0 = izn C6bD
This is a Penrose relation in matrix form.

Let. us denote

11 12

QQ Qz Q
1 2
r,,T,> = | @ ps = [ ] (7ad
11 12 nn :
L 24 “22J
now, from (6bh) we obtain
o™t = .i.zcxﬂn,31
: a a,f3 = 1,2 C7bd
o*? = J'.z""‘ﬁuﬁ,2 '
or more simply
o ) o®
@ = iZ2Ynm T = (7cd
3 L7

it is the incidence equation postulated first by Penrose.

Its physical meaning is the following [(11]:

the point z € @1* corresponds to the twistor T < 09=izaﬁnﬂ
It is obvious that all twistors 1lying on the Z2-plane given
in the (4) relations correspond to a given z € M* point and for a
given twistor T satisfying (7c) only one complex spacetime point =
is assigned. |

If one needs to describe the real space—time point x € &M%,
one should require the matrix 2 to be hermitean i.e.

z=2Y2>2=-i00* = icn oot (8ad



therefore we get the following reality condition:
nfa + oatn = o (8b>

or using the notation (7a) we have three relations:

W o o -
LA + W Ty, = 8]
a1
o2+ MMy =0 C8cd
az
w o2 w2 -
now + n,, = 0
al
where nf = Cnaﬁ)*, o*aﬁ = (Qaﬁ)* and "™ denotes the complex
a3
con jugation.

In the twistor framework the equations (8c) say that the twistors

T,,T, are "null-twistors” with respect to the U(2,2> norm:

r,,T,> = (T, ,T,0> = (T,,T,> =0 9
where
o
CT,T> = THGT = {m*“ n?] [0 Iz] [ @ ]
p) lr, o 3
and
= [1 O
I, = [0 1
Therefore, the reality condition is equivalent to the zerc
condition for twistors i.e. to wvanishing the Uc2,2> norm of
twistors T. The Z2-plains generated by the ‘'“null twistors™ are

called totally null planes.

In this way we obtain the following correspondence diagram:

complex planes in T ¢——+ points of M? [FompéggCZinkowski]

. 4 [real Minkowski

totall{nn%ll planes ¢——— points of (M space )
We would like to stress here, that from the point of view of
the twistor theory, regaroling the relation (7¢), it is more

natural to use twistors for the description of the complex



Minkowski Space or the null twistors for that of the real

Minkowski space time.

3. Supersymmetric extension of the Penrose incidence eaguaiion.

The aim of supersymmetry is to give a unified mathematical
description of bosonic and fermionic fields. Therefore, one can
consider bosons and fermions using the same theoretical scheme.
Supergsymmetry allows uz to transform the descriptions of bosonic
fields into fermionic ones and vice versa. (For more interested
reader in this subject we recommend the references [61).
Therefore, in order to have a possgibhility of the description of
bosonic and fermionic fields by using the twistor theory one has
to extend it supersymmetrically.

The supersymmetry replaces the notation of a space—time point
x=C(x?,x*,x%,x?® by an appropriate x=(x°,x!,x?%,x%; 6,,9,,..., 6

peint. of the superspace adding N Grasgmann variables 9 6

4229

These additional degrees of freedom anticommute themselves.
Now, we can define a supervector representing D=4 N-extended

superspace as follows

x = x%,x',x%,x%; 6,,...,0,p = x;0,0 - C1dad
where
=0, ..., &4 ; A=1, ..., N
[xH, xV1 = xMx¥ — xUxH* = 0
{6,,6,> = 6,6, + 6,6, =0 ) C11b)
txH,0,1 = xHe, — 6,x" = 0

The commuting coordinates of a supervector are called bosonic onesm
whereag its anticommuting coordinates are called anticommuting
ones.

In the same spirit one can generalize the twistor approach

introducing N-extended supertwistors T ™’ =%, N ;% ,...,& > € ¢V N
$3r 5y N

(bosonic supertwistors) and the fermionic N-extended supertwistors
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~({N)

T = 0,0, M3, 000,00 € ‘4,  where the n, quaniities are
fermionic coordinates and the u, quantities are the bosqnic ones
£31.

Let ug discusg the cagse of N=1 i.e. that of the simple
supersymmetry briefly.
(i) Two linearly independent supertwistors T:“,T;12 span (2;0> -

superplane in the superspace C* !, in analogy to eqs.(6a,b) we

get
011 012 iz
21 22
© W 1 2
CTi*?,Tit?) = | EY ¥2 | = |97 97 12>
T, n., 1 Q
o1 Moo 0 1

where Z2 and I1 are complex matrices of 2x2 type made up of bosonic

elements. This can be expressed (ef.eqs.(7)) as follows

ot = :'L..'chgn(31
oé2 = iz&ﬁnﬁz (12ad
¢t = e'n, + 0%m
{2 = 91"12 + 62"22
Therefore we obtain the sypersymmetric extension of’ the

Penrose relation (7c) in the form

3 (12b)

It means that each T51°=Cmé,nﬁ,{) supertwistor corresponds to
a (z,09 superspace point.

However, it isg not the only one posgibility of
the supersymmetrical generalization of the Penrose relation {(7c).
ii> Applying three linearly independent supertwistors

TiiJ,Téin,Tcin (two bosonic and one fermionic space cti t,



- 16 -

In analogy to (12> we have

e Sl f=LimlE L ke ®
A (&) e iz iz 2] 112 12 i1
€1 €13 1)y _ =
T, .T; , T ) = Ty My My 5 1 0 0 Moz a2 N2
n,, nw,n, a 1 <1 &z u
1 2
u 0 0o 1
| & s - L - 13>

where the fermionic supertwistor includes the four fermionic

¢(p*,p*,n,,n,> components and also one bosonic u.
The (2;1) — superplane is parametrized by a (Z£,6> matrix of 2x3

type with elements satisfying the following incidence relations:

o> = iza"anb + 0%¥ (bosonic incidence equation) (14ad
P2 = izaﬁnb + 6% (fermionic incidence equation) C1dbd

These equations give us a different generalization of the
Penroge relation from (12b).

Therefore, for N=1 sgupersymmetry there are two. possible
extensions of Penrose’s relation. In case of the N-extended
supersymmetry one can genaralize the equatipn (7&) in N+1

different ways. The case of arbitrary N is congidered in ref. (31].

4. Quaternionic extension of Penrose’s incidence equation for
Dmé mpacetime. |
There are two possible approches to D=6 twistor formalism:
(i) by extending Penrose’s relation from D=4 to D=6 as it has
been done by Hungston and Shaw in ref. [41].
(ii) by replacement of the complex 2x2 matrix 2. In this
approach the quaternionic 2x2 matrix Z=#*=R® describes
sixdimensional (D=68) real Minkowski spacetime point. One

can show that these two approaches are equivalent for the



description of the real sixdimensional spacetime RM®.
First let us discuss first the case (i)

One can consider the complex D=6 twistors: T=(o°,mq) e 2
Ca=1,...,4> as the norm of the s=spinors for eight dimensional
complex orthogonal group 0(8,0C is:

CT,T'> = %, n, + m' @ =0 15>
the points of the complex D=6 Minkowski space (M® are represented
by a complex dx4 antisymmetric matrix z%b= -z®e, The
Penrose—incidence equation takes the form

©* = z°°m ‘ a,b = 1,...,4 16>
This equation has a nontrivial solution if the twistors T are pure
(gimple) i.e.
T, T = 2% €17
in other words they have vanishing 0(8;C) norm.

The points of the real six dimensicnal Minkowskil space 1%y S

are represented by a 4x4d complex, antisymmetric matrix Z

satisfying the reality condition in the form

o1
0
2 = -2% where 2% = B 'z'B , B = |71,0 01 18>
and 2% denotes the hermitean conjugated matrix. This reality

condition for matrix 2 is equivalent to the following condition

for twistors

o¥en o+ n:oa = 0 where o't = (.).""’(B'i)h‘=L
a 19>
¥ = w2’
a b a
and ¥ means the complex con jugation.

The equation (19> ig in fact the condition of vanishing the V(4,42
norm. Therefore, D=6 twistors describe the pointe of the real
Minkowski space [RM® if the following two norms are zero:
0¢8;C> — norm: o, = C C20ad
UCd4,4d> — norm: o', + n¥o" = 0 C20bd

It means that D=6 twistors describing the points of ®M® are



invariant under quaternionic orthogonal group 0C4;0D cpvering the
conformal six dimensional group 00(6,2):
0C4;HD = U, C4;HD = 0C8;® n Ud,4d = 0TG,25 | 215

for details see ref: [71.

Therefore one can look for the quaternionic extension of D=4
twistor formalism which can describe [M® Minkowski space.
Now, let us consider the case (ii)d.
First, we recall some basic properties of the quaternions H, and

recommend the references (8] on this subject.

The quaterniong [H constitute a ffour—dimensional real
agsociative algebra with identity 1=e,. Any quaternion q ig given
by the sum:

q = q.e, + qe, +q,e, + q,e, 9y € R, 1=0,1,2,3 22>

where the guaternionic units satisfy the following multiplication
rule:

e, e, = _6tj + €Lk i,j,k =1,2,3 23>
lLet us notice that the real numbers IR are naturally embedded in ©H
by identifying Aoy = Ug € R.

For quaternions one can define a quaternionic caonjugation (so

called principal involution) writting

q =q, — q,e, — q,e, - q,e, (24ad>
and the norm

lgl® = a§ = q2 + q2 + q2 (24bd
Therefore, the algebra M has the natural structure of the
four—dimensional Euclidean space.
Sometimes it is useful to identify a quaternion q with the ordered

pair of complex numbers (zi,zz) by

q=2=z, +e,z, = (q, + qze,) + e, (q, + gq,ey) 28D
We can see that quaternions are the natural extensions of the real
numbers R as well as complex ones C.
Now, in analogy tp (4D for the given 2x2 quaternionic matrix £ we

can associate Z-plane in fourdimensional guaternionic space H -
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quaternionic twistor space as follows

L emmeny { subspace gpace by columns of 4X2 gquaternionic

e, £
matrix I } €262
2

By a gimilar procedure to egs.(4,5,6) we get the quaternionic

Penrose—xelation

(=3

W = EZZAﬁ B a,3 = 1,2 27>
where the quaternionic twistor has the form t = (oa, ﬂ)’

A real D=6 Minkowski spacetime point is described by a
sixdimensional vector x = (XGsXypeee,Xg) € M® which can be mapped

on a quaternionic Hermitean 2x2 matrix (cf.eqC1)):

- -

X _+X X +3x. 2
x — R = | °_ S, ok k =1,2,3 28>
4 Tk k [ I
The reality condition £ = 2* (2% denotes a quaternionic conjugated

and transposed matrix) is equivalent to the following condition
for quaternionic twistor t
t,t> = 5 e, at T a8,0% =0 29>

therefore, twistors t describe a point of RM® if their 0C4;3D0 =
= Ua(d;&D norms vanish.

Using the decomposition (285> of quaternionic coordinates of
twistor H one can immediately show that eq. (24) is equivalent to
the relations (20), so the descriptions of [RM® by the D=6 complex

twistors and D=6 quaternionic twistors are equivalent.

5. Final remarks.

It is worthwhile to notice that the two approaches above for
the twistor description of D=6 spacetime are equivalent oniy for
real space-time. This spacetime can be extended in two

nonequivalent ways: by complexification or quaternicnization
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procedures.

One can show also that the quaternionic formulation of
twistor theory &eads to serious difficulties with quantiﬁation of
twistors because of the noncommutitavity of quaternions. However,
the description of the D=6 gpacetime in the quaternionic framework
allows us to use the msame geometry as in case of the complex

description of D=4 spacetime.
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